

Scientific Computing

Fri, Feb 13

Announcements

- * Homework 2 due tonight, 11:59pm
pdf & zip file on D2L

Don't forget to keep track of and cite any external resources you use - friends, websites, AI, etc.

Two kinds of things to cite:

(1) A resource helped me learn about a topic

(2) A resource wrote this line of code.
Be specific.

- * Also, written explanations should be your own words.

Office Hours:

Mon, 9:30-10:30

Fri, 2:00-3:00

Cudahy 307

* Homework 3 assigned, due in 2 weeks
Covers search spaces, brute force,
and divide-and-conquer

Ex #4: Closest Pair of Points (hard) (70s)

Input: n points $P = \{p_1, p_2, \dots, p_n\}$

Goal: Find the pair (p_i, p_j) such that
 $d(p_i, p_j)$ = Euclidean Distance
is minimized.

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

(Assume distinct x and y values for simplicity.)

Step 1:- Create a version of P that is
sorted by x -value, call it P_x .
- Create a version of P that is sorted
by y -value, call it P_y . $O(n \log(n))$

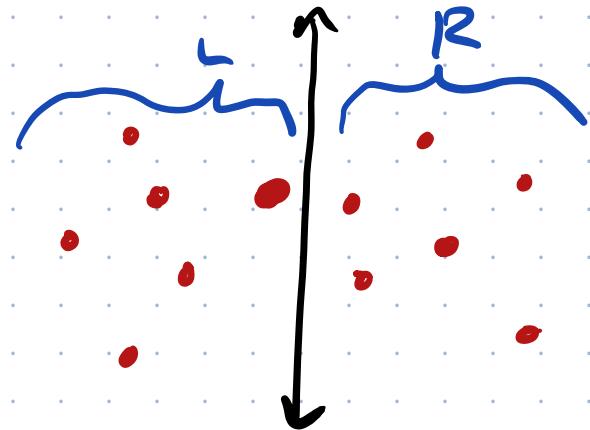
Step 2: Begin divide-and-conquer.

- Split P into left half L and right half R
using P_x . $O(1)$

- Form L_x, L_y, R_x, R_y using P_x
and P_y . $O(n)$

- Find closest pair in $L: \{l_1, l_2\}$
and closest pair in $R: \{r_1, r_2\}$ recursion.

- Set $\delta = \min(d(l_1, l_2), d(r_1, r_2))$. $O(1)$



- Now the hard part: how do we combine?

Closest pair could be in L, in R, or have one point in each.

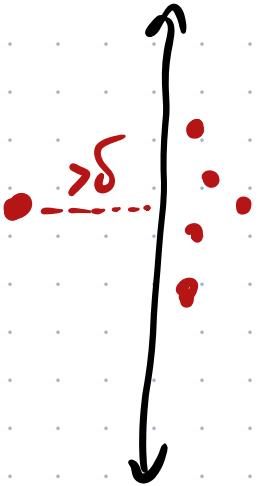
Fact 1: If the closest pair is split across the middle line, then each point has to be within γ of the line



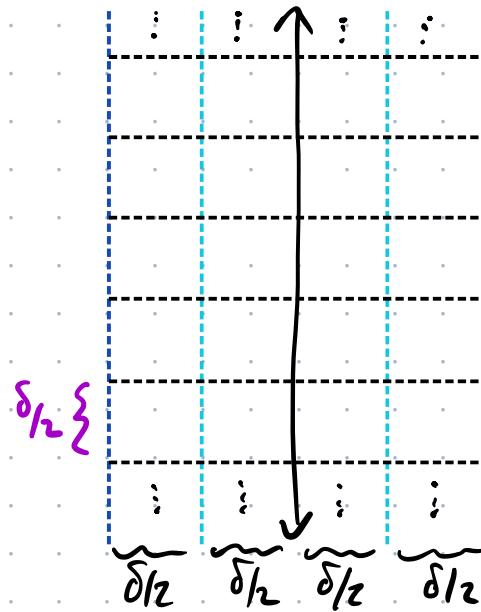
Define S to be just the points within δ of the line. $O(n)$

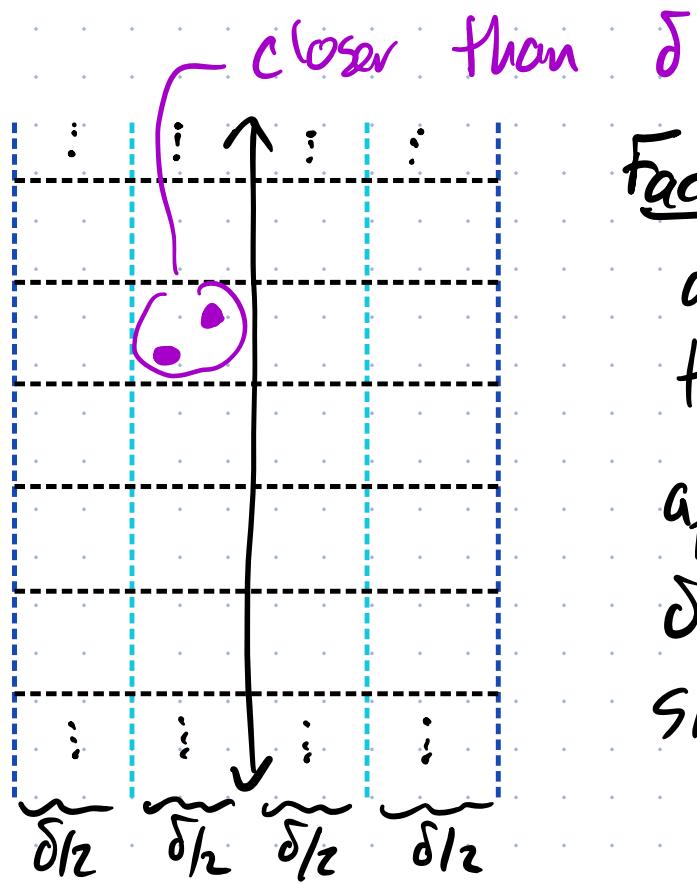
Note that $S = P$ is possible!

Form S_x and S_y using P_x and P_y . $O(n)$



Here's where it gets really weird! Split up the 2δ -wide vertical strip centered on the middle line into $\delta/2 \times \delta/2$ boxes.





Fact 2: Each box contains at most a single point of S . (Otherwise, those points would be $< \frac{\delta}{2}\sqrt{2} < \delta$ apart, contradicting the fact that δ is min. distance on either side of the line.)

Let's think about S_y , the points in S ordered by y-value.

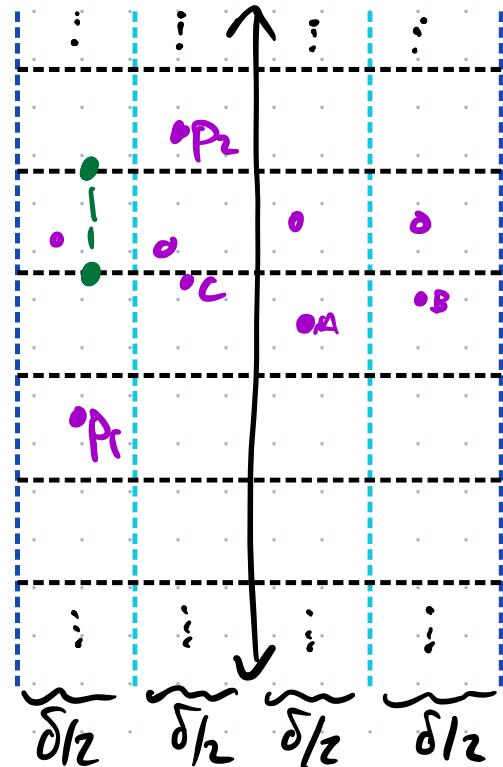
If you have two points in S_y that are 4 positions apart (e.g., the 10th and 14th), they have to be on different rows.

$$S_y = [\dots, P_1, A, B, C, P_2, \dots]$$

8 apart \rightarrow ~~empty~~ row between them $\rightarrow \geq \delta/2$ apart

12 apart \rightarrow 2 ~~empty~~ rows between them $\rightarrow \geq 2 \delta$ apart

Fact 3: If two points in S are $\leq \delta$ apart, their positions in S_y differ by at most 11.



So, to find the closest pair in S , we don't have to check every pair ($O(|S|^2)$), only the pairs at most 11 apart in the list

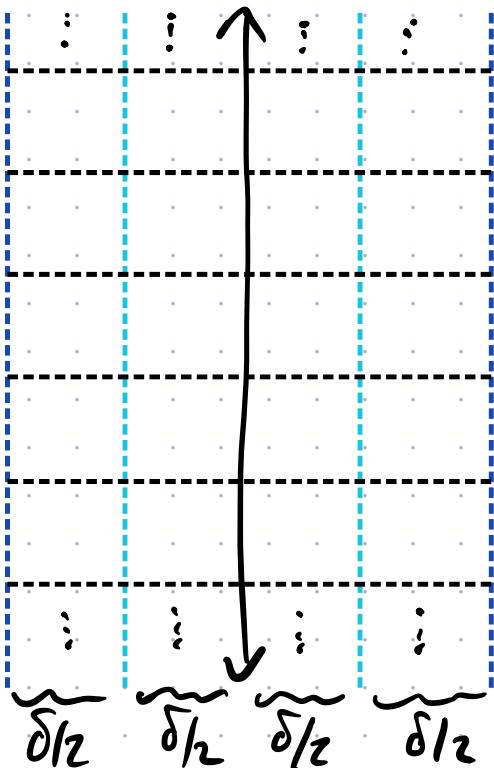
$(s_1, s_2), (s_1, s_3), \dots (s_1, s_{12})$ 11

$(s_2, s_3), (s_2, s_4), \dots (s_2, s_{13})$ $+ 11$

\vdots

\vdots

$11 \cdot n$ things to check
 $= O(n)$



Summary:

- Presort to get P_x, P_y $O(n \log(n))$
- Split in half and form L_x, L_y, R_x, R_y $O(n)$
- Recursively solve on L and R
- Find S, S_x, S_y $O(n)$
- Check pairs in S at most 11 apart $O(n)$

$$T(n) = O(n \cdot \log(n)) + S(n)$$

$$S(n) = O(n) + 2 \cdot S(n/2) + O(n) + O(n)$$

$$\Rightarrow S(n) = O(n \cdot \log(n))$$

$$\Rightarrow T(n) = O(n \cdot \log(n)).$$

Other famous divide-and-conquer examples.

Integer Multiplication

Input: Two n -digit numbers x and y

Output: $x \cdot y$

Simple algorithm:

$$\begin{array}{r} 172 \\ \times 424 \\ \hline 688 \\ 3440 \\ \hline 72928 \end{array}$$

$\mathcal{O}(n^2)$

$$\begin{aligned} D+C: \quad T(n) &\leq 3T\left(\frac{n}{2}\right) + O(n) \\ \Rightarrow T(n) &= O(n^{\log_2(3)}) = O(n^{1.59...}) \end{aligned}$$

Kind of crazy!

Summary:

- Split in two
- Solve each half recursively
- Combine into a big solution faster than brute force.

Topic 8 - Backtracking

Like Divide + Conquer, Backtracking is a framework for finding the optimal solution in a search space without checking every candidate one-by-one.

Very simple idea: Build solutions one part at a time, and give up when a partial solution violates the constraints.

Ex #1: Knapsack

Capacity = 10

item	weight	value
1	8	13
2	3	7
3	5	10
4	5	10
5	2	1
6	2	1
7	2	1

With brute force:

Possibilities: $\emptyset, \{1\}, \{2\}, \dots$
 $\{1, 3, 4, 5, 7\}, \dots$

not just too heavy, but
still too heavy if you
remove any single item,
so this is silly to even try!
128 possibilities

w/v	1	2	3	4	5	6	7	$C=10$
	$8/13$	$3/7$	$5/10$	$5/10$	$2/1$	$2/1$	$2/1$	

