

Scientific Computing

Mon, Feb 9

Announcements

- * Homework 2 due this Friday, 11:59pm
pdf & zip file on D2L

Don't forget to keep track of and cite any external resources you use - friends, websites, AI, etc.

Two kinds of things to cite:

- (1) A resource helped me learn about a topic
- (2) A resource wrote this line of code.
Be specific.

* Also, written explanations should be your own words.

Office Hours:

Mon, 9:30-10:30
Fri, 2:00-3:00

Cudahy 307

Topic 7 - Divide and Conquer

"Divide and Conquer" is an algorithmic paradigm that is roughly

- 1) Split the input in half
- 2) Solve the problem on each half
separately (recursively)
- 3) Combine your two answers into
one big answer.

Ex: Input:

3 19 -7 2

1 6 0 -10

3 19 -7 2

1 6 0 -10

3 19 -7 2

1 6 0 -10

3 19 -7 2

1 6 -10 0

-7 2 3 19

-10 0 16

-10 -7 0 1 2 3 6 19

Pseudocode

function merge-sort(Q): $Q = \text{list of } \#s$

if $|Q| \leq 1$:
 return Q

$L = \text{left half of } Q$

$R = \text{right half of } Q$

$L = \text{merge-sort}(L)$

$R = \text{merge-sort}(R)$

(at this point, we get to assume L and R are individually sorted)

new-list = []

while $|L| + |R| > 0$:

 take $L[0]$ or $R[0]$, whichever is smaller,
 remove it, and add to new-list

return new-list

recombine

If the input list has a single element, it's already properly sorted so return it

What's the runtime? Harder, because it's recursive. What we can do is find a recurrence for the runtime. $a_n = a_{n-1} + a_{n-2}$

Suppose the runtime is $T(n)$ when the input has size n .

Steps :

Apply to left half $T(n/2)$

Apply to right half $T(n/2)$

Merge

n

Recurrence: $T(n) = 2T(\frac{n}{2}) + n$

There is a theorem called The Master Theorem that tells you how to convert a recurrence into a formula.

See Wikipedia page

In this case, it tells us:

$$T(n) = O(n \log(n)).$$

→ Jupyter Notebook Sorting demo

