

Scientific Computing

Fri, Feb 6

Announcements

- * Homework 2 due Fri, Feb 13, 11:59pm
pdf & zip file on D2L
start early!!
covers Greedy Algorithms

Don't forget to keep track of and cite any external resources you use - friends, websites, AI, etc.

- * Today - we will allocate half of class time for me troubleshooting your Python installations - bring your laptop

Office Hours:

Mon, 9:30-10:30

Fri, 2:00-3:00

Cudahy 307

Topic 7 - Divide and Conquer

"Divide and Conquer" is an algorithmic paradigm that is roughly

- 1) Split the input in half
- 2) Solve the problem on each half
separately (recursively)
- 3) Combine your two answers into
one big answer.

Classic Example: Sorting a list (easy)

- * You can phrase this as a constraint satisfaction problem.
- * Input: n numbers
- * Search space: All orderings of n things.
These are called permutations, and the # of them is $n(n-1)(n-2)(n-3) \dots 3 \cdot 2 \cdot 1 = n!$
- * Goal: Find the rearrangement that puts things in the right order.

- * Obvious optimal algorithm: (greedy-ish)
 - Pick the smallest thing, put it first
 - Pick the next smallest thing, put it second, etc.

How many steps does this take?

◦ Finding the k^{th} smallest thing takes n steps (have to search the whole list)

◦ We have to do this n times.

Thus, $O(n^2)$. Fine for a few thousand things, but not more.

- 1) Split your input elements in half (or close enough)
- 2) Sort each half (recursively, by dividing and conquering)
- 3) Combine the two sorted halves into one big sorted list

Ex: Input: 3 19 -7 2 1 6 0 -10

recursion

recursion

-7 2 3 19

-10 0 1 6

smallest overall is the smallest of one of the halves

-10 -7 0 1 2 3 6 19

$O(n)$ comparisons to recombine

Ex: Input:

3 19 -7 2

1 6 0 -10

3 19 -7 2

1 6 0 -10

3 19 -7 2

1 6 0 -10

3 19 -7 2

1 6 -10 0

-7 2 3 19

-10 0 16

-10 -7 0 1 2 3 6 19

Pseudocode

function merge-sort(Q): $Q = \text{list of } \#s$

if $|Q| \leq 1$:
 return Q

$L = \text{left half of } Q$

$R = \text{right half of } Q$

$L = \text{merge-sort}(L)$

$R = \text{merge-sort}(R)$

(at this point, we get to assume L and R are individually sorted)

new-list = []

while $|L| + |R| > 0$:

 take $L[0]$ or $R[0]$, whichever is smaller,
 remove it, and add to new-list

return new-list

recursion

If the input list has a single element, it's already properly sorted so return it

What's the runtime? Harder, because it's recursive. What we can do is find a recurrence for the runtime. $a_n = a_{n-1} + a_{n-2}$

Suppose the runtime is $T(n)$ when the input has size n .

Steps :

Apply to left half $T(n/2)$

Apply to right half $T(n/2)$

Merge

n

Recurrence: $T(n) = 2T(\frac{n}{2}) + n$

There is a theorem called The Master Theorem that tells you how to convert a recurrence into a formula.

See Wikipedia page

In this case, it tells us:

$$T(n) = O(n \log(n)).$$

→ Jupyter Notebook Sorting demo

