



































































Scientific Computing FriFeble
Announcements

Homework 2 due Fri Feb 13 1159pm

pdf zip file on D2L

start early
covers Greedy Algorithms

Don't forget to keep track of and cite any external
resources you use friends websites AI etc

Effetors
Today we will allocate half of class

time for me troubleshooting your
Mon 930 1030

Python installations bring your
Fri 2 00 3 00

laptop Cudahy 307



TopicFDivideandconques

Divide and Conquer is an algorithmic
paradigm that is roughly

1 Split the input in half
2 Solve the problem on each half

separately recursively
3 Combine

your two answers into
one big answer



Classic Example Sorting a list easy

You can phrase this as a constraint
satisfaction problem

Input n numbers

Search space All orderings of n things
These are called permutations
and the of them is

n n 1 n 2 n 3 3 2 1 n

Goal Find the rearrangement that puts
things in the right order



Obvious optimal algorithm greedy ish
Pick the smallest thing put it first
Pick the next smallest thing put it
second etc

How many steps does this take
Finding the leth smallest thing takes
n steps have to search the

whole list
We have to do this n times

Thus O n Fine for a few thousand
things but not move



1 Split your input elements in half or closeough

2 Sort each half recursively by dividing
and conquering

3 Combine the two sorted halves into one

big sorted list



Ex Input

216qrecursion recursion

ftp t tit

u

10 7 8 Y Σ 3 6 19

O n comparisons to recombine



Ex Inp1 21b0

3 19 7 2 16 0 10Ww Ww

DEL LUI
we

E.EE

10701236196



Psef
merge sort Q Q list of s

if IQ 1 If the input list has a single

return Q element it's already properly sorted

left half of Q so return it
R right half of Q
L merge sort

2

R merge sort R
atthis point we get to assume L and R

new list are individually sorted

recombine while 1L IR 0

take LTO or RTO whichever is smaller

remove it and add to new list
return new list



What's the runtime Harder because it's
recursive What we can do is find a

recurrence for the runtime An An i an 2

Suppose the runtime is when the
input has size n

Steps

Apply to left half TCM
Apply to right half T 12

Merge n

Recurrence Tn 2T E n



There is a theorem called The Master Theorem
that tells you how to convertfrecurrenceinto a formula

See Wikipedia page

In this case it tells
Tln O n logh

Jupyter Notebook sorting demo



A few overall notes

We are splitting the input in half not
the search space

These algorithms are not obvious Many times
there isn't one

If there is it's usually faster than
brute force the recombining function
is always the hard part


