



































































Scientific Computing Wed FebI
Announcements

Homework 2 due Fri Feb 13 1159pm

pdf zip file on D2L

start early
covers Greedy Algorithms

Don't forget to keep track of and cite any external
resources you use friends websites AI etc

Effettors
Friday we will allocate half of class Mon 930 1030

time for me troubleshooting your Fri 2 00 3 00

python installations bring your Cudahy 307
laptop



Topic 5 Search Spaces and Brute Force

Most of our problems can be summarized

as

Out of all ways to do blank

1 Do any of them satisfy this
list of constraints

and or

2 Which one is optimal



Out of all ways to do blank

1 Do any of them satisfy this
list of constraints

and or

2 Which one is optimal

Greedy Algos gave us a quick way to get
a blank that might be decent but in most
cases is not at all guaranteed to be optimal

They don't check every
blank in fact they only

check a single one



The search space of a problem is the set of
all possiblethings that may or may not

satify your constraints and that all have some

score that you want to minimize or maximize

The next few lectures are focused on ways
to actually check the entire search space
to find the optimal solution



The most obvious way to do this is brute
force generate every single element of the
search space and check whether it satisfies

the constraints and if so what its score is



Ext Weighted Interval Scheduling
3 requests

ws
we

Search space all subsets of W wi W3

candidate satifies constraints score
0

wit 3

we 6

w 2

wim3 1twins

WeW3

Winning



Fact There are 2 subsets of a set
of size n



b best score we've seen

so farPs
f of requests loop over every element

b 0 of the search space

e urofR loops 2 times
if r is valid validity check takes O n

s score r
scoring takes On

if s b
Be

sol r

Lreturnbbestsol total time 2 2n 0 n2ⁿ

returning best score



Knapsacks Same situation n items
Search space all subsets of those n

items
size is 2 again



ClosestPaire Input n points in the xy plane

Goal Find the closest pair normal Euclidean
distance

distinct

Search space all unordered pairs of points

P nai 3 pipups
pre Haifa

pipe Pi P3
d pipe d Papi rips



Suppose our points are pi paps Pu

The searchspace is pi.pe pips papy Raps

papy ps py 6 pairs

In general it's the binomial coefficient

n choose 2 which is the of ways of

picking 2 things out of n order doesn'tmatter

2 En En 0 n

ignores multiples

and vanishing terms



It may seem surprising but this can actually be
done in O n log n time so without checking
every pair next lecture



GPU Problem from HW2

Thatreallyiseachconfiguration you're checking
made up of You have 60 transaction slots
and you need to assign a person to each
of them How many possibilities
Slot 1TpeopleCder matters
Slot 2 Tpeple
Slot 3 Ipeple
Slot 60 n59people_



Search space all ordered lists of 60
people out of the n total

Size n n 1 n 2 n 59 n6 n59 n58

0460

Good news Polynomial not Exponential

Bad news Yikes



NFL Schedules search space for 1 week all
ways of putting 32 teams in pairs For 17 weeks
all ways of picking 17 one week schedules

6.5 10294
ignoring bye weeks

of atoms in the universe 108



SummaryofBruteforc.pro
very easy to code
fewer bugs
guaranteed optimal
find all solutions
good to test other methods against

Cons SLOW can usually only do small
cases

weighted interval knapsack 2n

n up to
20 30 in a few minutes

pairs of points
n 100,000 in a minute not bad



So how can we find optimal solutions

1 Don't even bother greedy algos

2 Wander around the search space randomlyn
keeping track of the best you've seen

random search

3 Wander around the search space cleverly
keeping track of the best you've seen

metaheuristics



So how can we find optimal solutions

4 Check everything in the search space one by
one brute force

5 Check motherwiseruleout everything in
the search space divide and conquer
backtracking branch and bound

6 Do some clever computations that allow you
to score big chunks of the search space
all at once dynamic programming



So how can we find optimal solutions

4 Check everything in the search space one by
one brute force

5 Check motherwiseruleout everything in
the search space divide and conquer
backtracking branch and bound

6 Do some clever computations that allow you
to score big chunks of the search space
all at once dynamic programming



TopicFDivideandconques

Divide and Conquer is an algorithmic
paradigm that is roughly

1 Split the input in half
2 Solve the problem on each half

separately recursively
3 Combine

your two answers into
one big answer



Classic Example Sorting a list easy

You can phrase this as a constraint
satisfaction problem

Input n numbers

Search space All orderings of n things
These are called permutations
and the of them is

n n 1 n 2 n 3 3 2 1 n

Goal Find the rearrangement that puts
things in the right order



Obvious optimal algorithm greedy ish
Pick the smallest thing put it first
Pick the next smallest thing put it
second etc

How many steps does this take
Finding the leth smallest thing takes
n steps have to search the

whole list
We have to do this n times

Thus O n Fine for a few thousand
things but not move



Divide and conquer can do it in Oln log n

n m

2n 2n

4 42

n m

NH 24
1

2 2n


