

Scientific Computing

Wed, Jan. 28

Announcements

- * Homework 1 due Friday night, 11:59pm.

Office Hours:

Mon, 9:30-10:30
Fri, 2:00-3:00

Cudahy 307

Idea #4: best = "earliest ending time"

This works on all our previous examples.

Can we break it?

Intuition: Picking the one that ends earliest gets you credit for a meeting that gets out of the room as quickly as possible.

Algorithm:

let R be the set of requests.

Let A be the empty set.

While R is non-empty:

 Find the request with earliest end time.

 Add it to A .

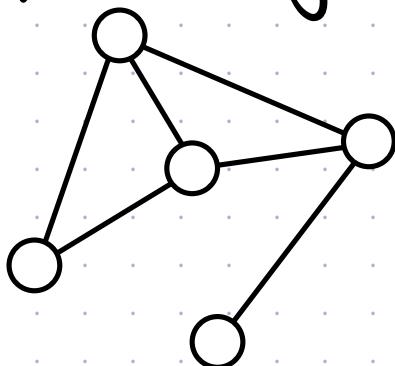
 Remove it from R and remove all other requests that are not compatible.

A is the solution

- * Coding the greedy algorithm!
- * Python lesson on functions and sort keys
- * Demo

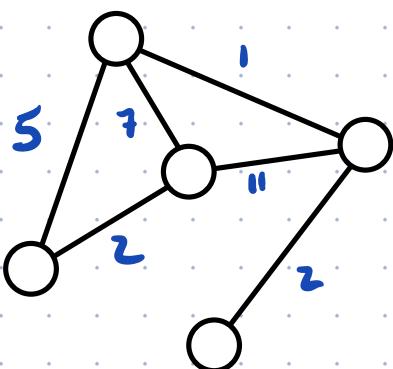
Problem #2: Minimum Spanning Tree

A graph is a set of vertices or nodes, connected in pairs by edges.



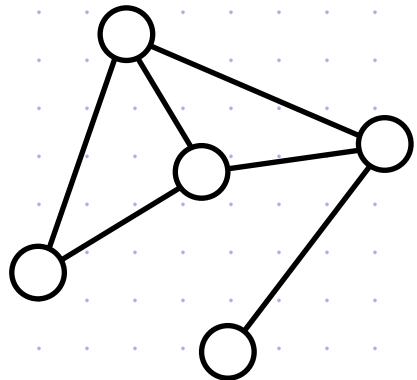
5 vertices
6 edges

A weighted graph is a graph whose edges have real #'s as "weights".

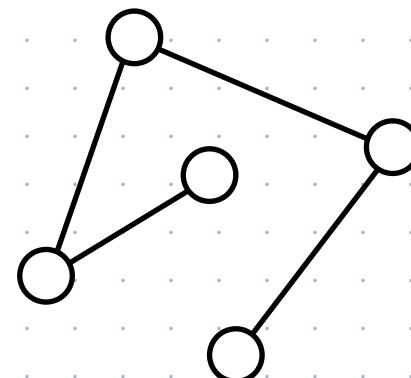


can reach every vertex from every vertex

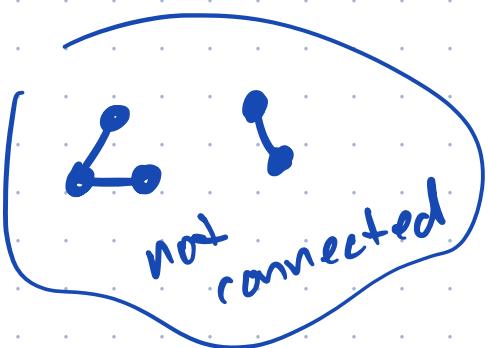
A tree is a graph that is connected and has no cycles.



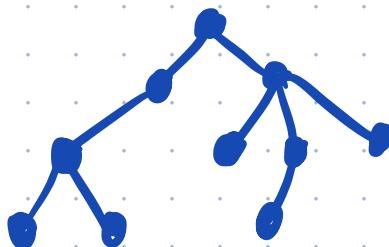
lots of cycles



no cycles = tree

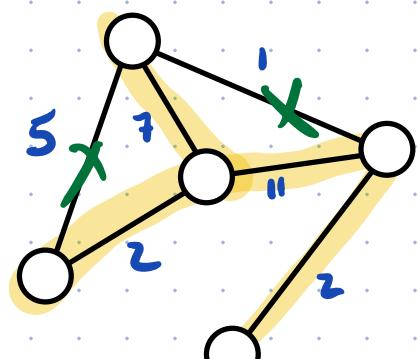


tree

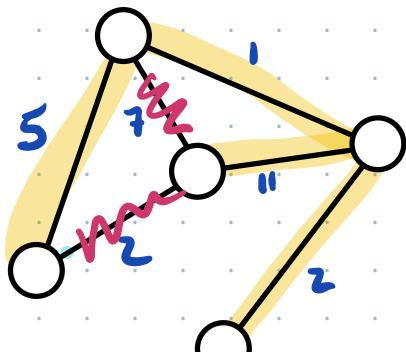


Minimum Spanning Tree Problem:

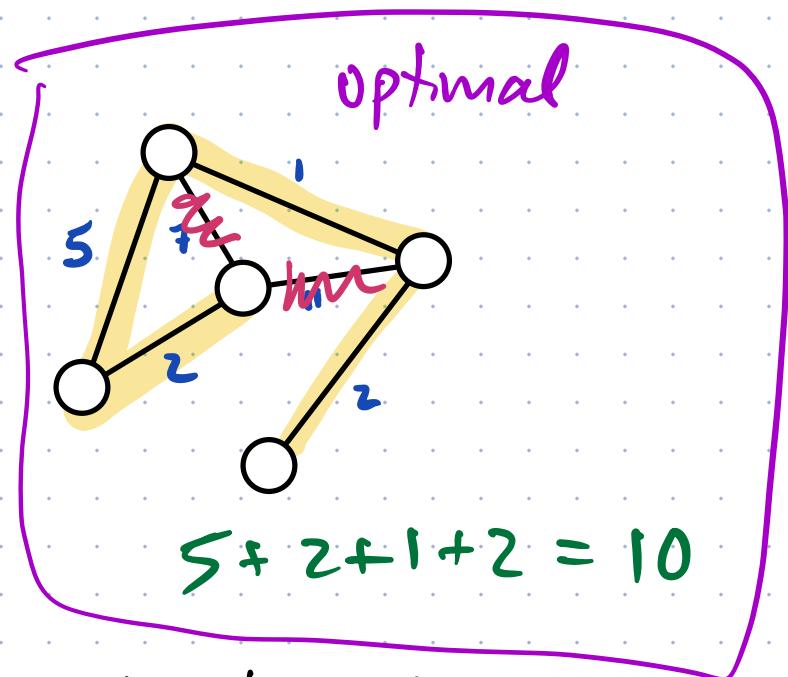
Given a weighted graph G , find the subset of edges that forms a minimum-weight spanning tree.



$$5 + 7 + 11 + 2 = 25$$



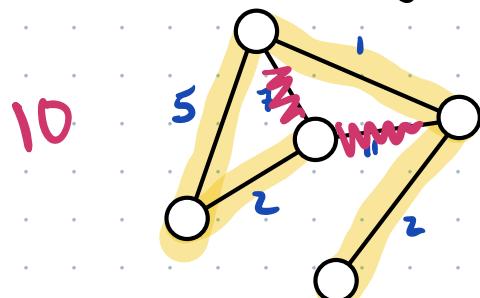
$$5 + 1 + 11 + 2 = 19$$



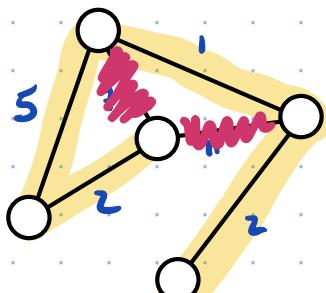
Ex: You might need to connect a bunch of buildings with cables, and the weight of the edges is the cost of the connection.

Possible Greedy Algorithms:

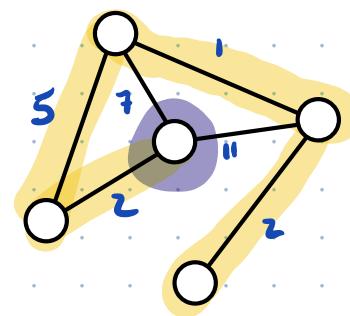
- * pick the cheapest edge that doesn't make a cycle (starting with no edges, adding one at a time)
- * start with all edges, and delete the most expensive one as long as it doesn't disconnect the graph
- * pick one node as the start, and repeatedly choose the cheapest edge that connects to a node you have reached so far



Idea #1



Idea #2



Idea #3

In this example they all generated the same tree, but that doesn't always have to be true.

More importantly: are any of these guaranteed to give optimal solutions?

Theorem: They all do!
(We won't prove it in class.)

Problem #3 : Weighted Interval Scheduling

This is like regular interval scheduling, except each request i comes with a value v_i and your goal is to maximize the total value of satisfied requests.

Our previous greedy algorithm is now pretty bad.

Possible Greedy Algos:

- * best = "highest value"
- * best = "shortest"
- * best = "highest $\frac{\text{value}}{\text{duration}}$ " (value density)

Are any of these optimal? No.

There is no known greedy algorithm that is optimal.

There are 2^n subsets of a set of size n .

How long would brute force take? If there are n requests, you'd need to check all 2^n subsets of them. So, the run time would be exponential, something like $O(2^n)$ or $O(n \cdot 2^n)$.

This is "big-O" notation, and it tells you roughly how many steps an algorithm has to use.

For this particular problem, there is a technique to do it in $O(n \cdot \log(n))$ time - very fast!

"dynamic programming"

