

Scientific Computing

Mon, Jan. 26

Announcements

- * Homework 1 due Friday night, 11:59pm.

Office Hours:

Mon, 9:30-10:30
Fri, 2:00-3:00

Cudahy 307

Greedy Algorithms

Vague definition: A greedy algorithm is a way of solving a problem that builds up a solution bit by bit, always picking the next bit that is the best, even that leads to a suboptimal full solution.

“neurotic”

They are:

- normally lightning fast
- much better than random solutions
- sometimes pretty bad, sometimes pretty good, sometimes provably optimal, depending on the problem.

Ex: Giving change - How does a cashier give change? Suppose you owe \$3.27 and pay with \$20. They start giving you bills and coins from largest to smallest.

You get \$16.73.

"Cashier's Algorithm" - As you give change, just give denomination possible at each step.

\$100	\$50	\$20	\$10	\$5	\$1	\$0.25	\$0.10	\$0.05	\$0.01
			1	1	1	2	2	0	3
6.73	1.73	\$0.73						1	

$$1+1+1+2+3 = 10 \text{ coins/bills}$$

Is this the combination with the least # of bills/coins that adds to \$16.73?

Problem #1: Interval Scheduling (Algorithm Design, by Kleinberg + Tardos)

Suppose you are in charge of a conference room that a lot of people want to use to hold meetings. A bunch of people tell you the times they want to book the room for, and your goal is to accommodate as many groups as possible.

Ex:

Reservations:

9am - 9:50am

9:30am - 10:30am

9:45am - 10:15am

9:50am - 10:30am

10:00am - 10:50am

10:30am - 11:15am

11:00am - 11:50am

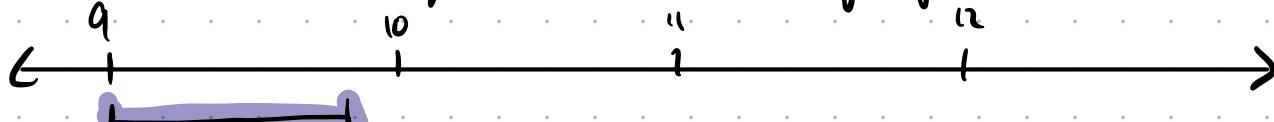
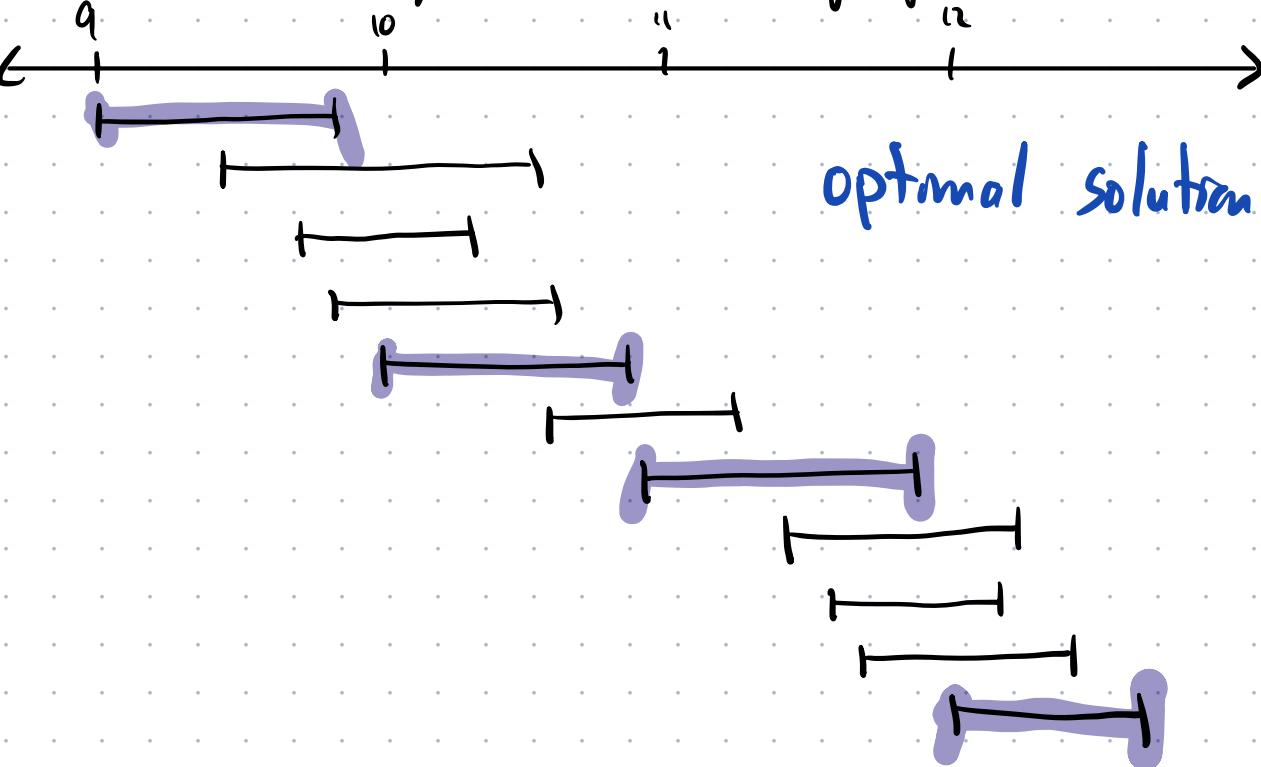
11:30am - 12:15pm

11:35am - 12:10pm

11:40am - 12:20pm

12:00pm - 12:30pm

What is the largest # of meetings you can book?



optimal solution: 4 meetings

Formal setup:

- n requests
- each request has a start time s_i and a finish time f_i (real numbers), with $s_i < f_i$.

Goal: find a maximal size subset of nonoverlapping requests

Two requests (s_i, f_i) and (s_j, f_j)

overlap if:

$$s_j < f_i \text{ and } s_i < f_j$$

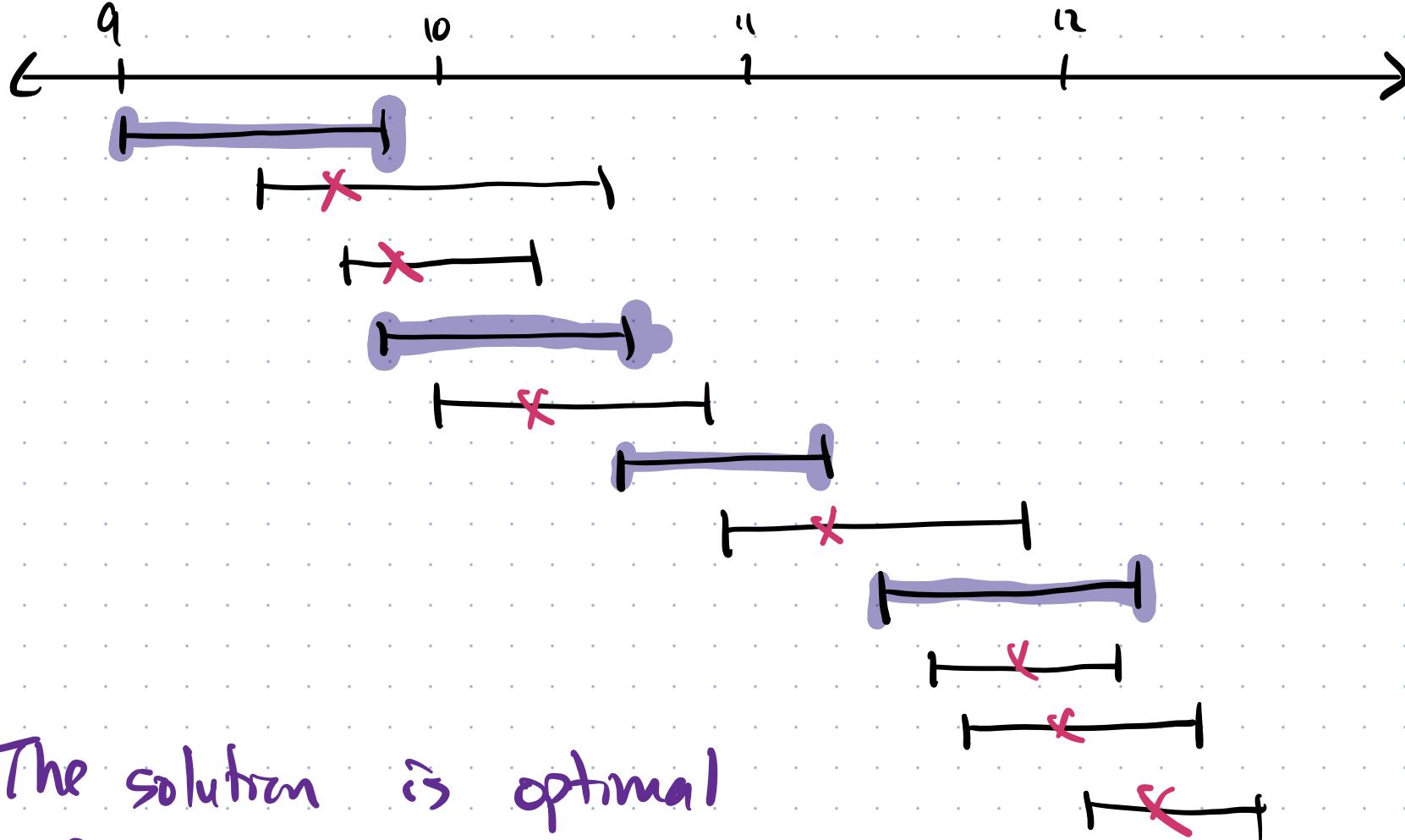
Let's think about possible greedy approaches.

General idea:

- * decide on a rule for which meeting is "best"

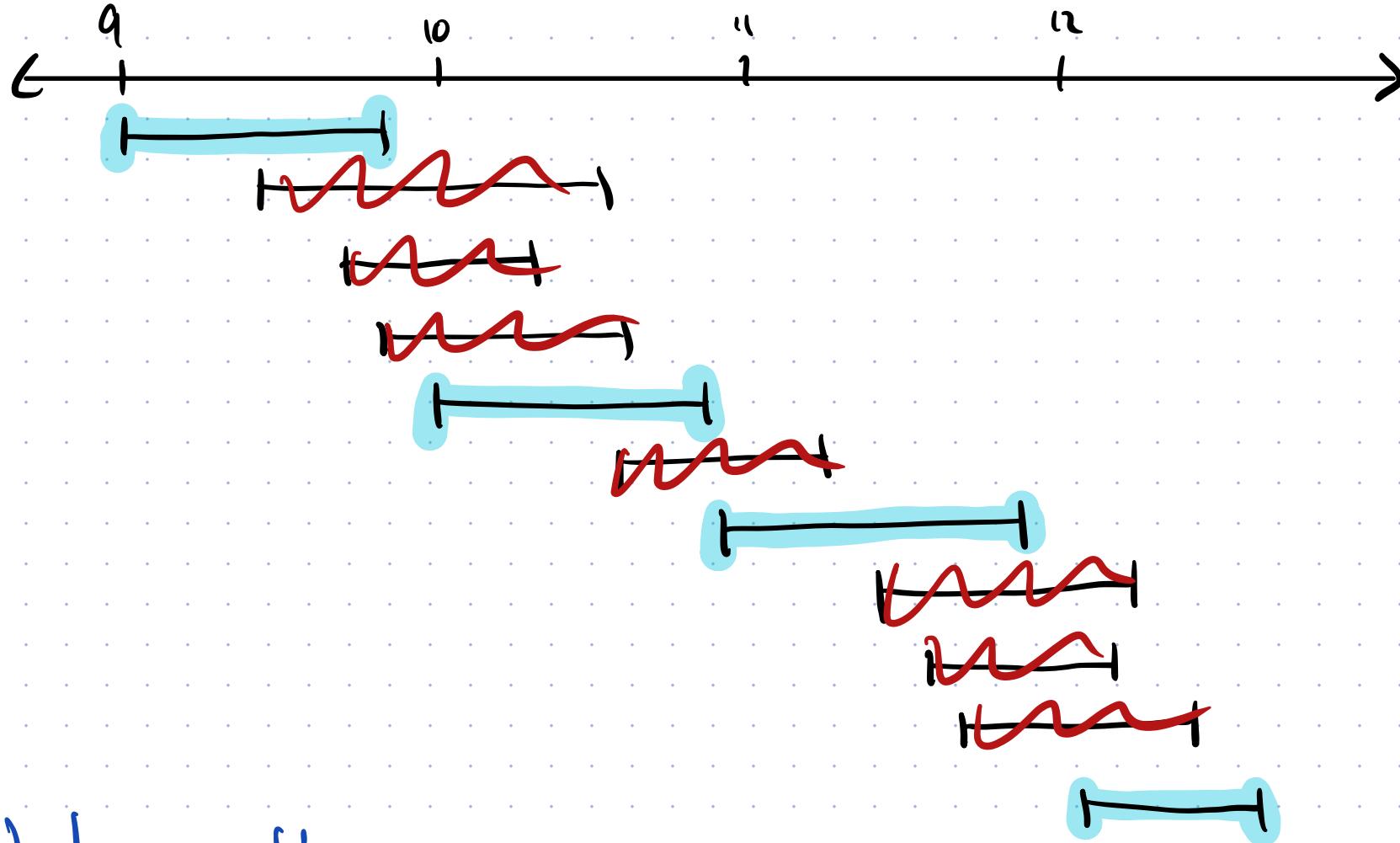
- * pick it, then eliminate conflicts
- * repeat

Idea #1: best = earliest start time



The solution is optimal
for this example

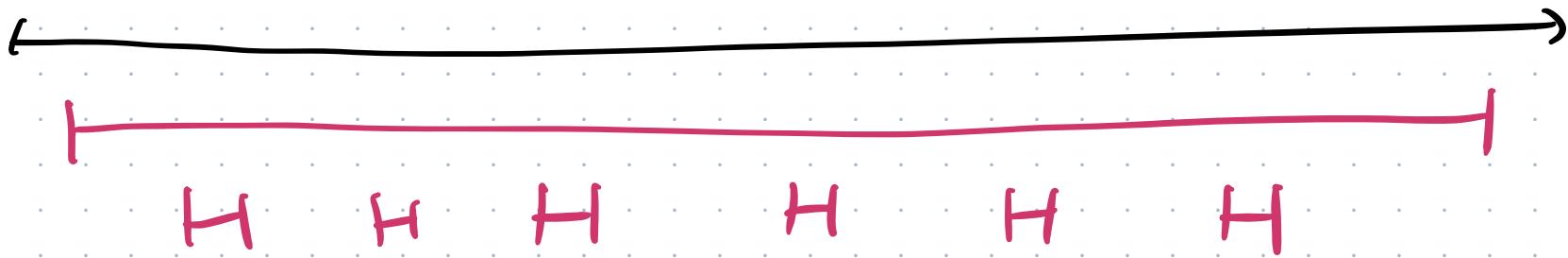
Idea #1: best = earliest start time



Works in this case.

Can we break it?

Idea #1: best = earliest start time
Can we break it?



This greedy algorithm is not optimal.

Idea #2: best = "shortest"

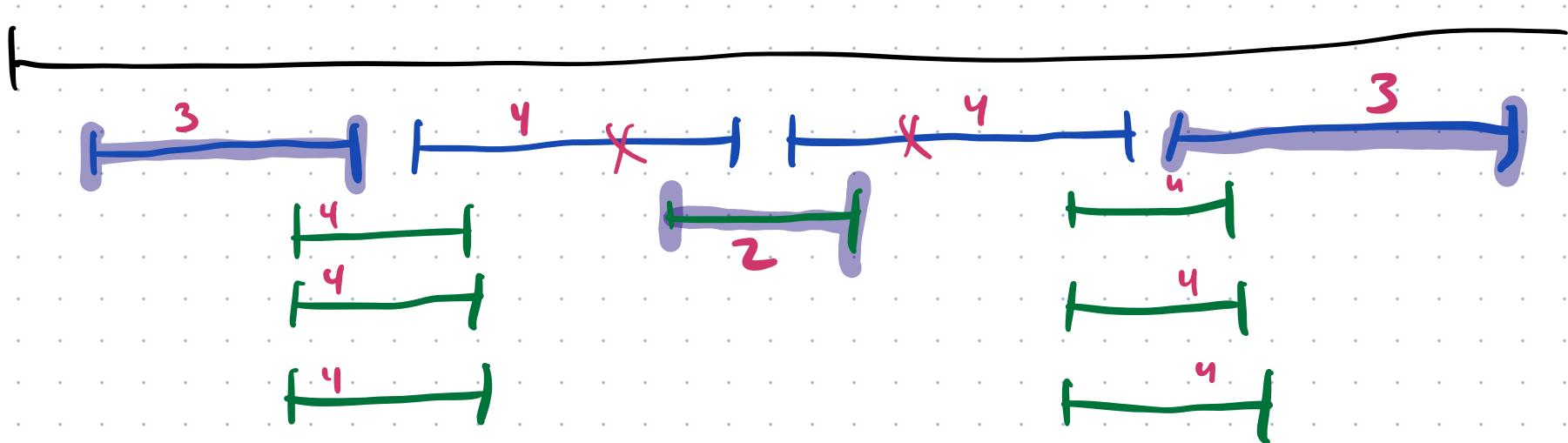
Can we break this?

Greedy solution: 1 red meeting

Optimal solution: 2 purple meetings

Idea #3: best = "least conflicts"

Can we break it?



Greedy: 3 meetings

Optimal: 4 meetings

Idea #4: $\text{best} = \text{"earliest ending time"}$

This works on all our previous examples.

Can we break it? No, this is an

optimal greedy algorithm

Idea #4: best = "earliest ending time"

This works on all our previous examples.

Can we break it?

Intuition: Picking the one that ends earliest gets you credit for a meeting that gets out of the room as quickly as possible.

Algorithm:

let R be the set of requests.

Let A be the empty set.

While R is non-empty:

 Find the request with earliest end time.

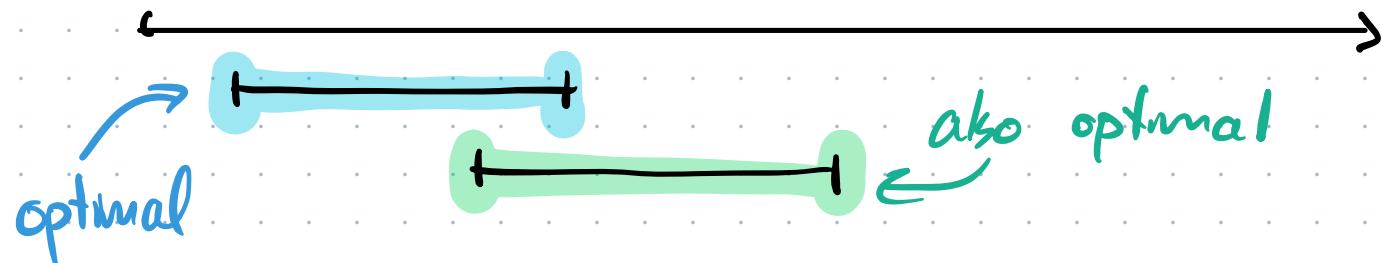
 Add it to A .

 Remove it from R and remove all other requests that are not compatible.

A is the solution

Theorem: The greedy algorithm produces an optimal solution.

Note: There could be other optimal solutions too.



Proof: Let R be a set of requests, and let A be the output of our greedy algorithm. Let O be an optimal solution. We want to show $|A| \leq |O|$.

Since O is optimal, $|A| \leq |O|$.

A common strategy when proving that your greedy algo. is optimal is showing that the answer it produces stays ahead of any optimal sol.

Suppose the requests in A are

$$A = \{(s_1, f_1), (s_2, f_2), \dots, (s_k, f_k)\}$$

and in O

$$O = \{(s'_1, f'_1), (s'_2, f'_2), \dots, (s'_m, f'_m)\}$$

and that we have listed them in order:

$$s_1 < f_1 \leq s_2 < f_2 \dots$$

$$s'_1 < f'_1 \leq s'_2 < f'_2 \dots$$

Note that $m \geq k$ since $|O| \geq |A|$.

Now we'll show that A "stays ahead" of O :

$$f_r \leq f'_r \text{ for } r=1, 2, \dots, k.$$

In English, the r^{th} task of A finishes before the r^{th} task of O .

We'll prove this by induction.

Base case: $r=1, f_i \leq f_1$!

This is true because we defined our greedy algorithm to start by picking the earliest ending time.

Induction step: Assume $f_i \leq f'_i$ for $i=1, 2, \dots, r-1$

We will show $f_r \leq f'_r$. We know:

$$* f_{r-1} \leq f'_{r-1}$$

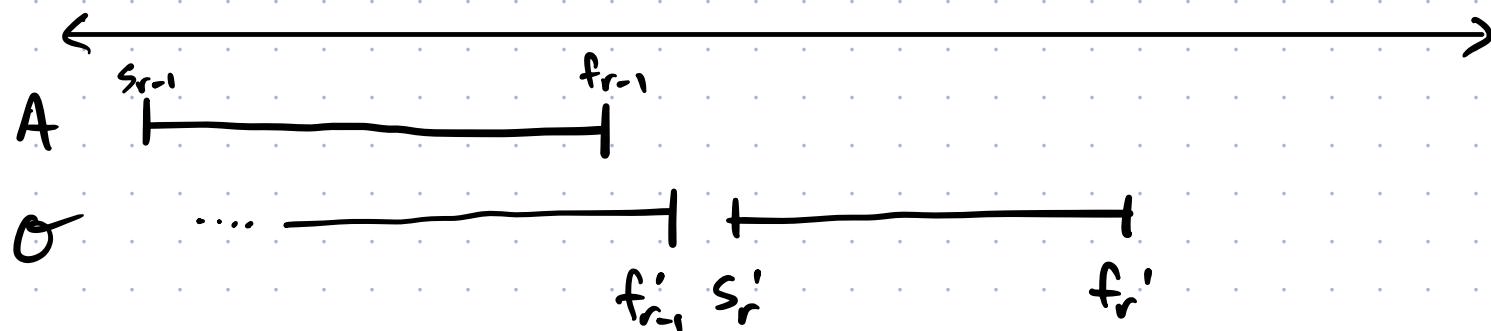
(induction)

$$* f'_{r-1} \leq s'_r$$

(otherwise O wouldn't make sense)

$$\Rightarrow f_{r-1} \leq s'_r$$

This means:



If it's not true that $f_r \leq f_{r'}$, then



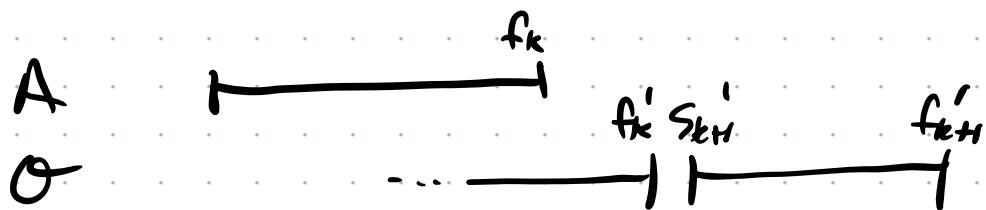
This is impossible because our greedy algo. would never have picked (s_r, f_r) - it would have picked $(s_{r'}, f_{r'})$ instead.

Thus, $f_r \leq f_{r'}$, completing the induction.

Not done yet!

So now we know A "stays ahead" of Θ , and we know $|A| \leq |\Theta|$. Last thing to show is $|A| = |\Theta|$. What would happen if it wasn't true, if $|A| < |\Theta|$? Recall $|A| = k$.

Then, Θ has a task (s'_{k+1}, f'_{k+1}) , and obviously $f'_k \leq s'_{k+1}$. Since A "stays ahead", $f_k \leq f'_k \leq s'_{k+1}$, which means (s'_{k+1}, f'_{k+1}) doesn't conflict with the requests in A and so our greedy algorithm would have picked it. \blacksquare



- * Coding the greedy algorithm!
- * Python lesson on functions and sort keys
- * Demo

