



































































sgientifccomputing Feb.it202Innouncements

HW 2 due tonight
Last time

Terge sort
Coding demo

Compared timings

Today Effetors
Divide and Conquer

Mont Fri

930am 1030am

Cudahy 307



A few overall notes

We are splitting the input in half not
the search space

These algorithms are not obvious Many times
there isn't one

If there is it's usually faster than
brute force the recombining function
is always the hard part



easy
Ex2_The simplest divide and conquer algo
is binary search

Guess the number

50
25

13

19

17



Ex2_The simplest divide and conquer algo
is binary search

Guess the number

In binary search you just throw away half
of your input each time n of elements

Recurrence T n Tg
list containment Oca

Set containment O login
Solution Tns Ologl_



Ext Counting Inversions medium

Consider a list of distinct s
mum

2 3 19 72 1 670 10

11912Th
An is a pair Ibi
where icj but Lis Lj an

out of order pair

The list L has 5 8 1 3 2 2 1 1420



Goal compute the of inversions in a

list of n elements

Obvious algorithm Challpairsy G

1 all ways of picking 2 things out of n

n 112 0 n



Divide and conquer 102 14 niz 0 n

NITTI

recursively count inversions recursively count inversions

4 Ʃ
So 9 inversions within a half How many
between the lists That would be a blue

element that is larger than a red one

Right now to do that we'd have to go
through all blue red pairs which takes

444 time still O n not good



Here's the trick While we're counting inversions

we'll alse sort the lists which we know
takes Ologens time

2 49 72 160 1
4 5

7 2 3 19 10 0 1 6



Now we recombine the lists just like
the mergesort and when do we detect
an inversion Anytime we take from the
red list there is an inversion for everything
left in the blue list

7 2 3 19 10 0 1 6 4 5 9
11

10 7 0 1 2 3 6 19

4 3 3 1

Time T a 2T E 2n
Tcn O nlog n



Ex1 Closest Pair of Points hard 70s

Input n points P pi Pa pn

Goal Find the pair pi ps such that
d pips Eudidean Distance

is minimized

Assume distinct x and y values for simplicity

2 n log n
O n logal

Step 1 Create a version of P that is
sorted by x value call it Px
Create a version of P that is sorted
by y value call it Py O n login



Step 2 Begin divide and conquer

Split P into left half L and right half R
using Px OCI

as
if

a
Form Lx Ly Rx Ry using Px
and Py O n

Find closest pair in L late
and closest pair in R rare recursion

Set 8 min d l la derive OCI



Now the hard part how do we combine

Closest pair could be in L in R or have

one point in each

Fact If the closest pair is split across the
middle line Teach point has to be within
5 of the line

8 min allele dural if

a.it



otp nDefine 5 to be just the points within
8 of the line O n

EfNote that is possible
Form Sx and by using R and Py Ocn

to
on

Here's where it gets really weird Split up the
25 wide vertical strip centered on

the.mg

dle line
into 8 2 boxes



f

Faa Each box contains atmost
a single point of S Otherwise

those points would be IE Cd

apart contradicting the fact that
d is min distance on either
side of the line

Let's think about Sy the points in 5 ordered

by y value



If
you

have two points in Sy that are 4
positions apart e.g the 10ᵗʰ and 14ᵗʰ they
have to be on different rows

8 apart empty now between them apart
12 apart 2 empty rows between them d apart

Fact If two points in S are

fd apart their positions in Sy

differ by atmosts



So to find the closest pair in 5 we don't have

to check every pair
0 1512 only the pairs

at most 11 apart in the list

a S

site 51,53 s 512

111

f

1 on things to check

Oln



Summary

Presort to get Px Py O n log n

Split in half and form x Ly R Ry Ocn

Recursively solve on L and R

Find S Sx Sy Ocu
Check

pairs in 5 at most 11 apart Ocn

Tcn O n log n Scul
s n O n 2.5 k Ocu to n

Sln O n login
Tcn O n log n



Other famous divide and conquer examples

IntegerMultiplications
Input Two n digit numbers x and y
Output xoy

Simple algorithm 172
any

3440

D C Tcn 3T Ocn
Tcn O nlog 3 O n

59

Kind of crazy



STEFFI in two 0cm
nSolve each half recursively

Combine into a big solution faster than
brute force




