



































































sgientifccomput.nl Feb12,202Imouncements

HW 2 due Mar Feb 17

Office hours this Enday are rescheduled to 2pm 3pm

NextMonday no in person lecture and no office hours

Today Effetors
Search Spaces and Brute Force Mont Fri

Divide and Conquer
930am 1030am

Cudahy 307



GPU Problem from HW2

Thatreallyiseachconfiguration you're checking
made up of You have 60 transaction slots
and you need to assign a person to each
of them How many possibilities
Slot 1 n people order matters
Slot 2 n 1 people n possibilities

In 1 possibilitiesSlot 3 n 2 people
n z poss

Slot 60 n 59 people 2 n 59 poss

All tuples of size 60 with no repeats

solution P P2 P3 Poo



Search space all ordered lists of 60
people

Size n n 1 n 2 n 59 n6 n59 n58

0460

Good news Polynomial not Exponential

Bad news Yikes



NFL Schedules search space for 1 week all
ways of putting 32 teams in pairs For 17 weeks
all ways of picking 17 one week schedules

10294T ignoring bye weeks

of atoms m

the universe 1080



SummaryofBruteforc.pro
very easy to code
fewer bugs
guaranteed optimal
find all solutions

t totestothermethodsagainst
Cons SLOW can usually only do small

cases

weighted interval knapsack 2n

n up to
20030 in a few minutes

pairs of points O n

n 700,000 in a minute not bad



ComparingwithGreedyalgos
Greedy Brute Force

Elst
ᵗ

810Th
wt

Not guaranteed optimal Guaranteed Optimal



So how can we find optimal solutions

1 Don't even bother greedy algos

2 Wander around the fearchspace randomlyn
keeping track of the best you've seen

random search

3 Wander around the search space cleverly
keeping track of the best you've seen

metaheuristics

D



So how can we find optimal solutions
or optimal ish

4 Check everything in the search space one by
one brute force

5 Check motherwiseruleout everything in
the search space divide and conquer
backtracking branch undtandbo

6 Do some clever computations that allow you
to score big chunks of the search space
all at once dynamic programming



So how can we find optimal solutions

4 Check everything in the search space one by
one brute force

5 Check motherwiseruleout everything in
the search space divide and conquer
backtracking branch and bound

6 Do some clever computations that allow you
to score big chunks of the search space
all at once dynamic programming



TopicGDivideandconques

Divide and Conquer is an algorithmic
paradigm that is roughly

1 Split the input in half
2 Solve the problem on each half

separately Crecursivelyl
3 Combine

your two answers into
one big answer



Classic Example Sorting a list easy

You can phrase this as a constraint
satisfaction problem

Input n numbers
c

Search space All orderings of n things
These are called permutations
and the of them is

n n 1 n 2 n 3 3 2 1 n

Goal Find the rearrangement that puts
things in the right order



Obvious optimal algorithm greedy ish
Pick the smallest thing put it first
Pick the next smallest thing put it
second etc

insertion sortn items

How many steps does this take
Finding the leth smallest thing takes
n steps have to search the

nth i h z t 1 whole list
n we have to do this n times
Thus Fine for a few thousand
things but not move



Divide and conquer can do it in Oln log n



1 Split your input elements in half or closeough

2 Sort each half recursively by dividing
and conquering

3 Combine the two sorted halves into one

big sorted list



Ex Input We 60 10 1

n
ort 319 7 2

WW sort 16 10

1
at 3 19 sart 7 2 sat 1 61 sort 0 10

11 11 11 11

31 If by
7231 tt

I

10 70123619 2



Psefff.fm
merge sart Q Q list of s

if Q 1

return Q

left half of Q divide input into
R right half of Q two parts leftt
L merge sort

2 right
R merge sort R IS of things

F is
new list len s
while 14 IR 20

take LTO or RTO whichever is smaller

remove it and add to new list
return new list



What's the runtime Harder because it's
recursive What we can do is find a

recurrences for the runtime

Suppose the runtime is when the
input has sized a

2 is the size

Steps of the left
half

Apply to left half TLM
Apply to right half T 12

Merge
T E IT E n

Recurrence Tn 2T E n



There is a theorem called The Master Theorem
that tells you how to convert a recurrence

into a formula

T n
2 T E n

In this case it tells us merge sort
Ifiologn

Jupyter Notebook sorting demo




