Fri, May 3, 2024

* HO 6 due tonight
* Course Evals open until Sunday
* Tahe-hone final assigned, due next Fri on D2L, Il:S9pm
* OH next week
- Wed 12-1
- Thurs 9-11
- by email

Topic 14 - Neighborhoods in Continuous Space
Previously: moving a square - bad in higher dimensions
moving a sphere - much better (1) Muller method

Other ways to mare around space:
(2) Gaussian Randan Walk For each component, odd a shift drawn fran a normal distribution $N(0, \delta)$

$$
\hat{q}_{\text {mean }}=0 \quad \delta=\text { std devi }
$$

"thin tails"

3) Lévy Flight

A different distribution.

smaller α has lower prob. of picking \#s cole to 1, but higher prob of picking large \#s mach thicker tails than Gaussian

The dist. above only gives \#s ≥ 1, so we need to modify it.

To pick a \# from the modified dist: *Pick a \# r randomly uniformly from

* Define $s=r^{1 / \alpha}$

$$
(0,1]
$$

* Make s pos. ar neg. with 50-50 probability.

Iuspivation: travel patterns of predator animals. Many small movements, occassiandly big movements.

