Wed, May 1, 2024

* HW 6 due on Friday
* Course Evals open
* O.H. may start up to 10 minutes late today

Topic 14 - Neighborhoods in Continuous Space
So for we've used a simple tweak in our continuous problems.
$x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \quad d$ dimensions

$$
s=\text { tweak }(x)=x+\left(r_{1} \delta_{1}, r_{2} \delta_{2}, \ldots, r_{d} \delta_{d}\right)
$$

where each r_{i} is a uniform random \# in $[-1,1]$ and each δ_{i} is decided ahead of time.

Works okay when d is small (Lar 3)
for now, assume $\delta_{i}=1$ and

$$
\begin{aligned}
x= & (0,0,0, \ldots, 0) \text { so } \\
& \quad \text { tweak }(x)=\left(r_{1}, r_{2}, \ldots, r_{d}\right) .
\end{aligned}
$$

The new point tweak (x) is somewhere in the d-dimensional cube with side length 2 centered at the origin.
$d=2$ $d=3$

$$
d=3
$$

What is the farthest that s could be away from x ?

$$
\begin{aligned}
& d=2 \sim \sqrt{2} \approx 1.41 \\
& d=3
\end{aligned} \quad \sqrt{3} \approx 17
$$

In d-dimensional space $\leadsto \sqrt{d}$

Peking points in a aube can lead to very far away tweaks. Instead pick from a sphere.

* How do you pick points uniformly from the unit circle?

Idea 1) Rejection Sampling
Pick points in the square
Check if each point is in the circle If so, heep it
If not, throw away and try again
Works, but very slow in higher dimeusous

Idea 2) Pick $x \in[-1,1]$
Pick $y \in\left[-\sqrt{1-x^{2}},+\sqrt{1-x^{2}}\right]$
Idea 3) Pick an angle $\theta \in[0,2 \pi)$ and a radius $r \in[0,1]$
 doesn't work

This one can be fixed in $2 d$ by taking the square root of the radius
There is a way to pick uniformly from the d-dimensional sphere.
Muller method:

* Pick $\left(\mu_{1}, \mu_{2}, \ldots \mu_{d}\right)$ each fran a Gaussian distribution (normal) with mean 0 and std dev. I
* Calculate the norm:

$$
\sqrt{\mu_{1}^{2}+\mu_{2}^{2}+\cdots \cdot+\mu_{d}^{2}}
$$

* Pick a randan \# $r \in[0,1]$ uniformly
* Set $\left.x=\frac{\left(\Gamma^{1 / d /} \cdot(\vec{\mu}\right.}{\text { norm }}\right)^{\text {pons in mace }} d-d m$

Difference between the disphere and the d-cube

d	vol of the d sphere	vol of the d-cube $3 d$
1	2	2
2	3.14	4
3	4.19	8
4	4.93	16
5	5.26	32
6	5.168	64
10	2.55	$2^{0}=1024$
20	0.03	$2^{20}=1,048,576$

So, most of the volume of the cube is not in the sphere.

Muller method \Rightarrow nice small tweaks

