Math 2350 – Homework 3

Fall 2025

due Wednesday, October 15, at the beginning of class

Sections 2.1, 2.2

This homework assignment was written in LATEX. You can find the source code on the course website.

Instructions: This assignment is due at the *beginning* of class. It may be handwritten (as long as I can read it) or typed with software such as Word or Latex. Please write the questions in the correct order. Explain all reasoning.

- 1. Prove that if *a* and *b* are nonzero rational numbers, then so is $\frac{ab}{2} + \frac{1}{b}$.
- 2. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If x, y, and z are integers and if x divides y and x divides z, then x^2 divides yz.

3. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If x, y, and z are integers and if x divides z and y divides z, then xy divides z.

4. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *n* is a positive even integer, then $3^n + 1$ is divisible by 5.

5. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *n* is a positive even integer, then $n^3 + 2n$ is divisible by 4.

6. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *m* is a positive odd integer, then $m^2 - 1$ is divisible by 8.

- 7. Prove that the sum of any three consecutive integers (for example, 6+7+8) is always a multiple of 3
- 8. Prove that if 3 divides $4^{n-1} 1$ then 3 divides $4^n 1$.
- 9. Prove that no perfect square can have the form 3n + 2 for an integer n.
- 10. Prove that if n is an even integer, then 4(n + 1) + 3 is odd.