Math 1450 - Calculus 1

Fri, Nov. 14

Announcements:

- * Course withdrawal cleadline: tonight come talk to me after class if you need your exam score today
- * Next Thursday:

 -> Quiz 9 (lost one!) 7 4.7+4.8

 -> Homework 12
- * Final Exam-Wednesday, Dec 8, 8pm-10pm Weaster Auditorium Today:

-> 4.7: L'hôpital's Rule

Office Hours Mondays, 12-1 Wednesdays, 2-3 + Help Desk! 121

Section 4.7 - L'Hôpital's Rule

Back when we learned limits, we had lots $y=e^{2x}-1$ of examples that gave $\frac{1}{5}$ if you just $\frac{1}{5}$ plugged in the #! e-1 = 1-1 = 0 Ex: $\lim_{x\to 0} \frac{e^{x}-1}{x} = \frac{e^{-1}}{0} = \frac{1-1}{0} = \frac{0}{0}$ When you zoom in to any function very zoomed closely at a point that's differentiable in the function storts to look like a line. the TL.

lim
$$e^{2x-1}$$
 $f(x) = e^{2x}$
 $f(x) = 2e^{2x}$
 $f(x) = 2e^{2x$

$$\lim_{x\to\infty}\frac{2x}{x}=\lim_{x\to0}2=[2]$$

General Rule fev lm
$$\frac{f(x)}{g(x)}$$
 when $f(a) = 0$
 $x \rightarrow a$ $g(x)$ and $g(a) = 0$
Linear approx. for $f(x)$ at $x = a$:
$$f(a) + f'(a)(x - a)$$
Linear approx. for $g(x)$ at $x = a$:
$$g(a) + g'(a) - (x - a)$$
Near $x = a$:

$$\frac{f(x)}{g(x)} = \frac{f(a)(x-a)}{g(a)(x-a)} = \frac{f'(a)(x-a)}{g'(a)(x-a)} = \frac{f'(a)}{g'(a)}$$

Summon

$$\frac{f(+)}{g(+)} \approx \frac{f'(a)}{g'(a)}$$

$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)} \text{ unless } g'(a) = 0$$

L'Hôpital's Rule

If f and g are differentiable at x=a and if f(a) = 0 and g(a) = 0 and $g(a) \neq 0$, then: $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$

Ex:
$$lm \leq m(x)$$
 Check $\frac{0}{0}$? $sin(0) = 0$

What if
$$f'(a)$$
 is $\frac{c+i1}{0}$? Do it again.
Ex: $\lim_{t\to 0} \frac{e^t - x - 1}{t^2} = \frac{1}{z}$
Plug in $0: \frac{e^0 - 0 - 1}{0^2} = \frac{0}{0}$
 $(e^t - t - 1)' = \frac{e^t - 1}{2t}$
plug in $0: \frac{e^0 - 1}{2 \cdot 0} = \frac{0}{0}$
 $(e^t - 1)' = \frac{e^t}{2}$ plug in $0: \frac{e^0}{2} = \frac{1}{0}$
 $(2t)' = 2$

Slightly move general version:

If f and g are differentiable and f(a) = g(a) = 0, then:

 $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f(x)}{g(x)}$

$$\lim_{t\to 0} \frac{e^t - t - 1}{t^2} = \lim_{t\to 0} \frac{e^t - 1}{2t} = \lim_{t\to 0} \frac{e^t}{2} = \frac{1}{2}$$

L'Hopital's rule can be applied also when:

** if the limit is $x \to \infty$ or $x \to -\infty$ ** rather than $x \to a$ ** if $\frac{f(a)}{g(a)}$ is $\frac{\infty}{\infty} - \frac{\infty}{-\infty} - \frac{\infty}{-\infty}$

one-sided limits

Ext

$$lm$$
 $\frac{5x+e^{-x}}{7x} \frac{05x-30}{80}$
By LH:

$$= \lim_{x\to\infty} \frac{(5x+e^{-x})}{(7x)'} = \lim_{x\to\infty} \frac{(5-e^{-x})}{7}$$

$$= \lim_{x\to\infty} \frac{(5x+e^{-x})}{(7x)'} = \lim_{x\to\infty} \frac{(5-e^{-x})}{7}$$

$$= \lim_{x\to\infty} \frac{(5x+e^{-x})}{(7x)'} = \lim_{x\to\infty} \frac{(5-e^{-x})}{7}$$

04 x->00

Sometimes you have to manipulate an expression to put it in a form where L'Hopital's Rule X->00 Ex. lm (x·ex) ex>0 00.0, not a L'Hopital form

 $x \cdot e^{-x} = (x)$

 $= \lim_{x \to \infty} \frac{1}{e^x} = 0$

$$\lim_{X\to0^{+}} \frac{|x \cdot lu(x)|}{|x \cdot lu(x)|} = \lim_{X\to0^{+}} \frac{|x \cdot lu(x)|}{|x|}$$

$$= \lim_{X\to0^{+}} \frac{|x \cdot lu(x)|}{|x|} = \lim_{X\to0^{+}} \frac{|x \cdot lu(x)|}{|$$