## Math 1450 - Calculus 1

Mon , Nov. 10

Announcements: Tuesday

\* HW 11 che tomorrow covers 4.3+4.6

\* Exam 3 on Wednesday, Spm-6pm covers (3.5,)3.6,3.7,3.9.3.10 4.1,4.7,4.3,[4.6]—related trug

-> Exam 3 study guide is on our course website

loday:

-> 4.6: Related Rates -> Review

\* Course withdrawal deadline is Fri

Office Hours Mondays, 12-1

Wednesdays, 2-3

+ Help Desk! 121

4.6: Related Rates This section: Two different quantities are related. \* rodius of a sphere vs. volume of a sphere  $V=\frac{4}{3}\pi$ . \* position of a plane in air vs. the angle it's making with some landmark \* speed of a cor vs. fuel efficiency How is the rate of change of one related

to the rote of change of the other?

| Ex: A     | 3-meter       | of the load | ands agains  | t a high outward                      |
|-----------|---------------|-------------|--------------|---------------------------------------|
| • • • • • | • • • • • • • |             |              | the foot                              |
|           |               |             |              | the top of                            |
|           |               |             |              |                                       |
| (1) Due   | e variable    | names to a  | 11 relevant  | quantities?                           |
|           |               | 100         |              | 1                                     |
|           | 3/ / y        | who         | t is dy?     | $\frac{\partial x}{\partial t} = 0.1$ |
|           |               | Weed an     | equotian the | at relates                            |
|           | X             | x and y     | 2 0          |                                       |
|           |               | X +         | 1 = 1        |                                       |

. .

. .

. .

. . .

. . .

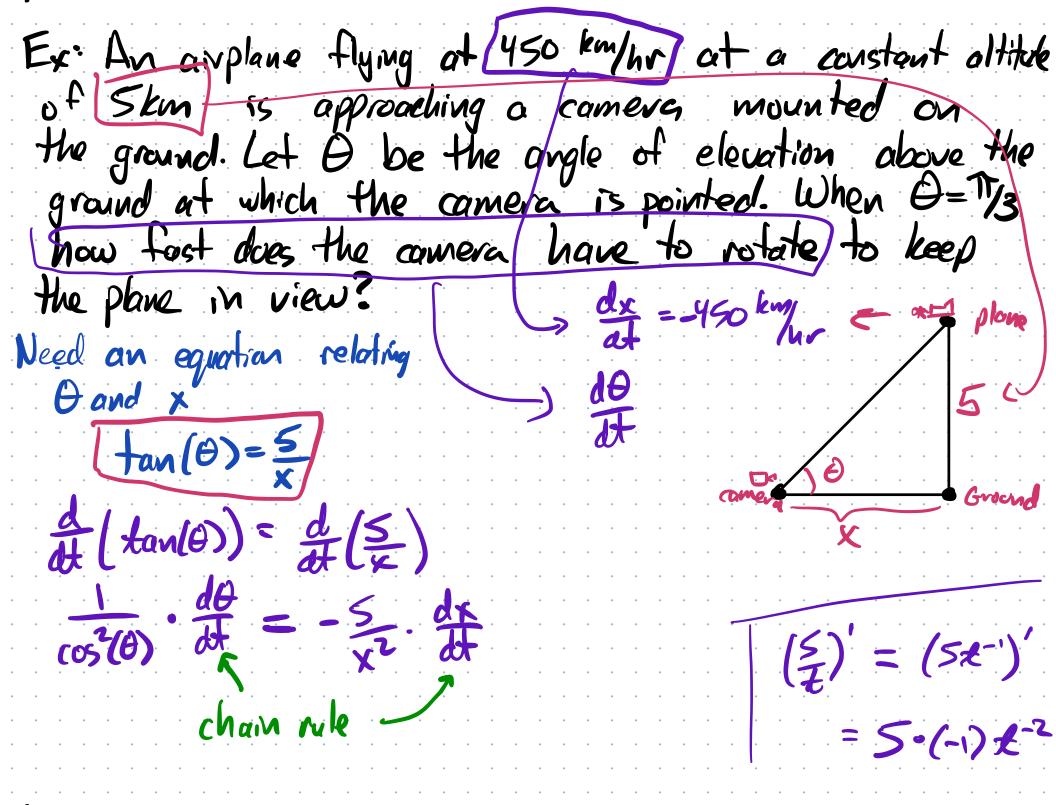
Ex: A 3-meter ladder stands against a high wall. The foot of the ladder moves outward at a constant speed of 0.1 m/s. When the foot is I'm from the wall, how forst is the top of the ladder falling? What about 2m?

x²+y²= 9 \* Take deriv. of both

x²+y² = 9 sides with respect

d (x²+y²) = d (9) to a new variable, t.  $\frac{\partial \cdot x \cdot dx}{\partial x} + 2 \cdot y \cdot dy = 0$ Know X,  $\frac{dx}{dx}$ We can figure outy
because x2+y2=9. equation that relates the rates of change of x and y

Ex: A 3-meter ladder stands against a high wall. The foot of the ladder moves outward at a constant speed of 0.1 m/s. When the foot is I'm from the wall, how forst is the top of the ladder falling? What about 2m?


x²+y²= 9 \* Take deriv. of both

x²+y² = 9 sides with respect

d (x²+y²) = d (9) to a new variable, t.  $\frac{\partial \cdot x \cdot dx}{\partial x} + 2 \cdot y \cdot dy = 0$ Know X,  $\frac{dx}{dx}$ We can figure outy
because x2+y2=9. equation that relates the rates of change of x and y

Ex: A 3-meter ladder stands against a high wall. The foot of the ladder moves outward at a constant speed of 0.1 m/s. When the foot is I'm from the wall, how first is the top of the ladder falling? What about 2m? 3/29 2·x·# + 2·y·#=0 Four variables, x, of y, dy, so if we have any 3, we can solve for the 4th when the Got is I m away from the wall: 

Ex: A 3-meter ladder stands against a high wall. The foot of the ladder moves outward at a constant speed of 0.1 m/s. When the foot is I'm from the wall, how first is the top of the ladder falling? What about 2m? / 42+4=9 2.x. dx + 2.y. dy = 0 3/3/3 Four variables, x, of, y, dy, so if we have any 3, we can solve for the 4th when the foot is 2 m away from the wall: 2 +y2 = 9  $\frac{dx}{dt} = 0.1 \left( \frac{dy}{dt} = -0.089 \text{ m/s} \right) = 4$ y= 15 ) / What about x= 2.999?



Ex: An applane flying at (450 km/hr) at a constant of the of 5km is approaching a comercy mounted on the ground. Let  $\Theta$  be the angle of elevation above the ground at which the camera is pointed. When  $\Theta=1/3$ now fost does the cornera have to rotate to keep the place in view.  $\frac{1}{\cos^2(\theta)} \cdot \frac{d\theta}{dt} = -\frac{5}{x^2} \cdot \frac{dx}{dt} + \frac{1}{2} \frac{1}{\cos^2(\theta)} = \frac{1}{x^2} \cdot \frac{1}{2} \frac{1}{2}$ Know: 0x = -450 10 = 1/3/, x = 1/3 amen 10
Ground Want to find de  $\frac{d\theta}{dt} = \frac{1}{4} \cdot \frac{-5}{25/3} \cdot (-450)$  $\frac{1}{\cos^2(\frac{\pi}{3})}d\theta = \frac{-5}{15/\sqrt{3}}(-450)$   $\frac{1}{4} \Rightarrow 4 \cdot d\theta = -\frac{5}{25/3}(-450)$ 2 = 67.5 rod/hr (=1 degree/sec)