Math 1450 - Calculus 1

Fri, Nov. 7

Announcements:

* HW 11 due Tuesday, rovers 4.3+4.6, Lig sections!

* Exam 3 on Wednesday, Nov. 12 / Spm-6pm covers 3.5, 3.6, 3.7, 3.9, 3.10
41, 4.7, 4.3, 4.6

-> Exam 3 study guide is on our course website

Today:

-> 43: Optimization + Modeling -> 4.6: Related Rates Office Hours
Mondays, 12-1
Wednesdays, 2-3
+ Help Desk! n

. <u>.</u>	box (all			· · · · · <u>·</u>
base	and exactly	24 M2	surface	ovea
	Volume:	Xa·h		
	Surface a	veq: 2x2	+ 4xh =	24
X : : : :		> h= 3	Constrain	* : : : : : : : : : : : : : : : : : : :
	volume: x2.	(24-2x2)		
	Makim	(ite.		

Ex: What is the maximum volume of a closed box (all 6 sides) with a square bose and exactly
$$24 \text{ in}^2$$
 surface area?

Volume: $x^2 \cdot h$

Surface area: $2^2 + L = 24$

Volume: $x^2 \cdot \left(\frac{24 - 2x^2}{4x^2}\right) = \frac{1}{4}\left(24x - 2x^3\right)$
 $y'(x) = 6 - \frac{3}{2}x^2 = 0$
 $y''(x) = -6 \text{ (neg)}$
 $y''(x) = -6 \text{ (neg)}$

$$f'' \ge 0 \implies f \text{ is } CCL$$

$$f'' > 0 \implies f \text{ is } CCL$$

$$f'' = 0 \qquad f'' = 0$$

$$f'' = 0 \qquad 2nd \quad deviv$$

a closed box (all 6 sides) with a square base and exactly 24 in surface area?

Volume: (2.h) Ex: What is the maximum volume of Volume: (x2.h) - Maximum Surface aveg: 2x2+4xh = 24 vol = (8 in 3) Volume: x (24-2x2) = 1 (24x-2x3) $= 6x - \frac{1}{2}x^3 = V(x)$ X>O Since there ove no other critical points, this local max is a global max X=2 => h= Z h= 24-2x2 l double check constraint: 2.(2)2+4.2.2-24 · · · 4x ·

4.6: Related Rates This section: Two different quantities are related. * rodius of a sphere vs. volume of a sphere * position of a plane in air vs. the angle it's making with some landmark * speed of a cor vs. fuel efficiency How is the rate of change of one related

to the rote of change of the other?

Ex: A spherical snowball is melting. Its radius is decreasing at a constant rate of 2 cm/min from an introl radius of 70cm. How fast is the volume decreasing half an hour later? (No new concepts needed for this one.) (30)

r of lime
$$t$$
 (minutes): $\Gamma(t) = 70 - 2t$
 $V = \frac{4}{3} \pi r^3 = \frac{14}{3} \pi (70 - 2t)^3 = V(t)$
 $V' = \frac{4}{3} \pi \cdot 3(70 - 2t)^2 \cdot (-2) = -8\pi [70 - 2t)^2$
 $V'(30) = -8\pi \cdot (10)^2 = -800\pi = -2500 \text{ cm}^3/\text{min}$

What if we didn't have a formula r(x)
for the radius?

Ex: A spherical snowball is melting in such a way
that at the instant the radius is 20cm, the
radius is decreasing at a rate of 3cm/min.

At what rate is the volume changing at the same instant?

V= \frac{4}{3} \tau \tau^3 \take the derivative of both sides

V(t) = \frac{4}{3} \tau (ntt)^3 \text{ with respect to \$t\$ (time)

Ex. A spherical snowball is melting in such a way that at the instant the radius is 20cm, the radius is decreasing at a rate of 3cm/min. At what rate is the volume changing at the same instant? 1V=14.73 VH)= 3.11 (CH) 故(V(共))= は(学…(ハ代))3) $V'(t) = \frac{3}{3} \cdot \pi \cdot \frac{d}{dt} \left(r(t)^{3} \right)$ 3·(r(*))2·r'(*)

Tells us how the Roc of vol is related to Roc of radius

Ex: A spherical snowball is melting in such a way that at the instant the radius is [20cm] the radius is decreasing at a rate of [3cm/min]. At what vote is the volume changing at the same instant?

$$V'(t) = 4\pi (r(t))^2 \cdot r'(t)$$
 Some thing
 $dV = 4 \cdot \pi \cdot r^2 \cdot dr$ To have
 dt chain so notation

Want to know dt at the moment when

$$r=20$$
 and $\frac{dr}{dt}=-3$ $\frac{dv}{dt}=4-17\cdot 20^3\cdot (-3)=-4800017$ min

Ex: A	3-meter	of the load	ands agains	t a high outward
• • • • •	• • • • • • •			the foot
				the top of
(1) Due	e variable	names to a	11 relevant	quantities?
		100		1
	3/ / y	who	t is dy?	$\frac{\partial x}{\partial t} = 0.1$
		Weed an	equotian the	at relates
	X	x and y	2 0	
		X +	1 = 1	

. .

. .

. .

. . .

. . .

Ex: A 3-meter ladder stands against a high wall. The foot of the ladder moves outward at a constant speed of 0.1 m/s. When the foot is Im from the wall, how forst is the top of the ladder falling? What about 2m? $x^2 + y^2 = 9$ d (x2+y2) = d (9) 2·x·x + 2·y· = 0 We can figure outy
because x2+y2=9 Solve for of

