Math 1450 - Calculus 1

Wed, Nov. 5

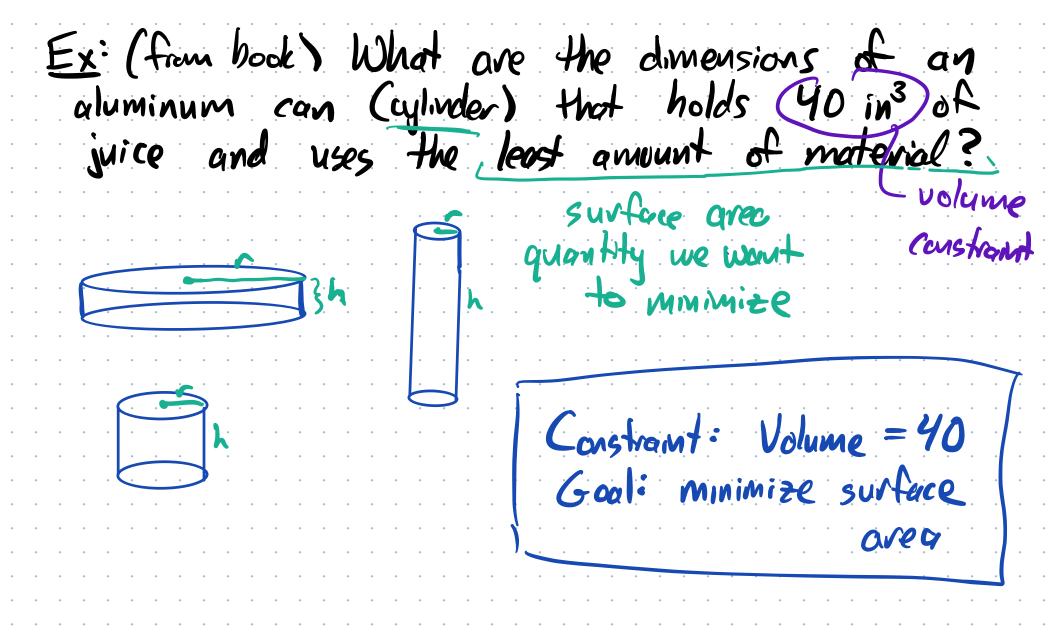
/ Spm-6pm

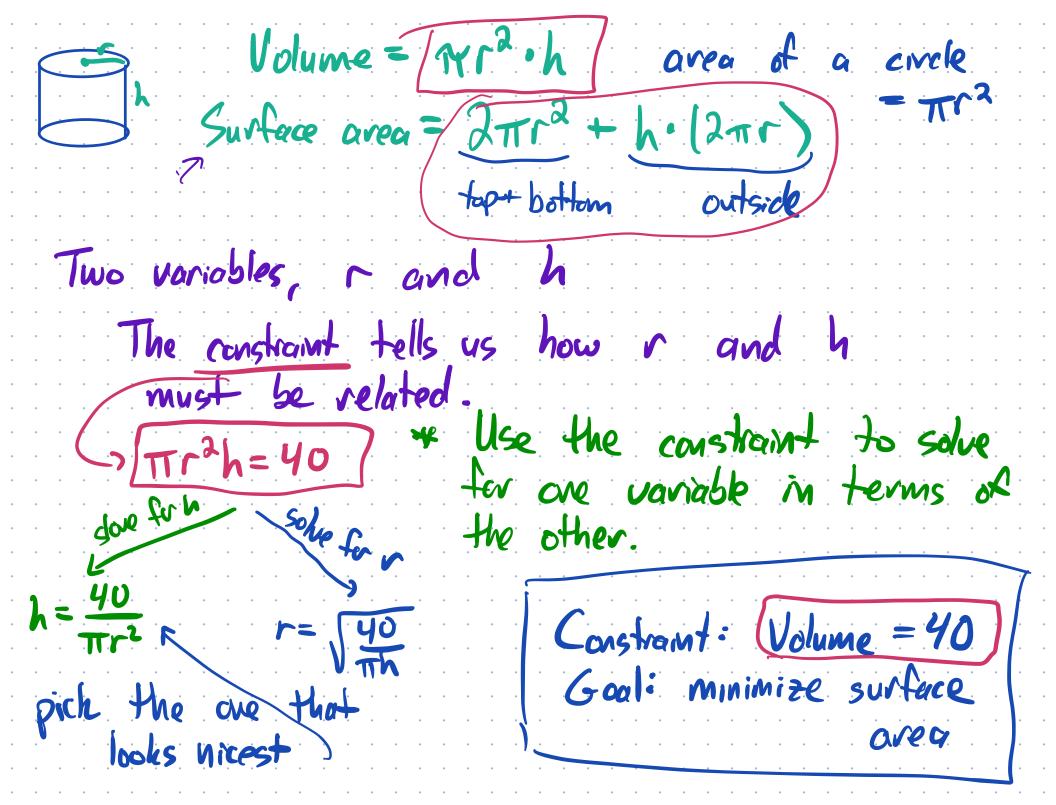
Announcements:

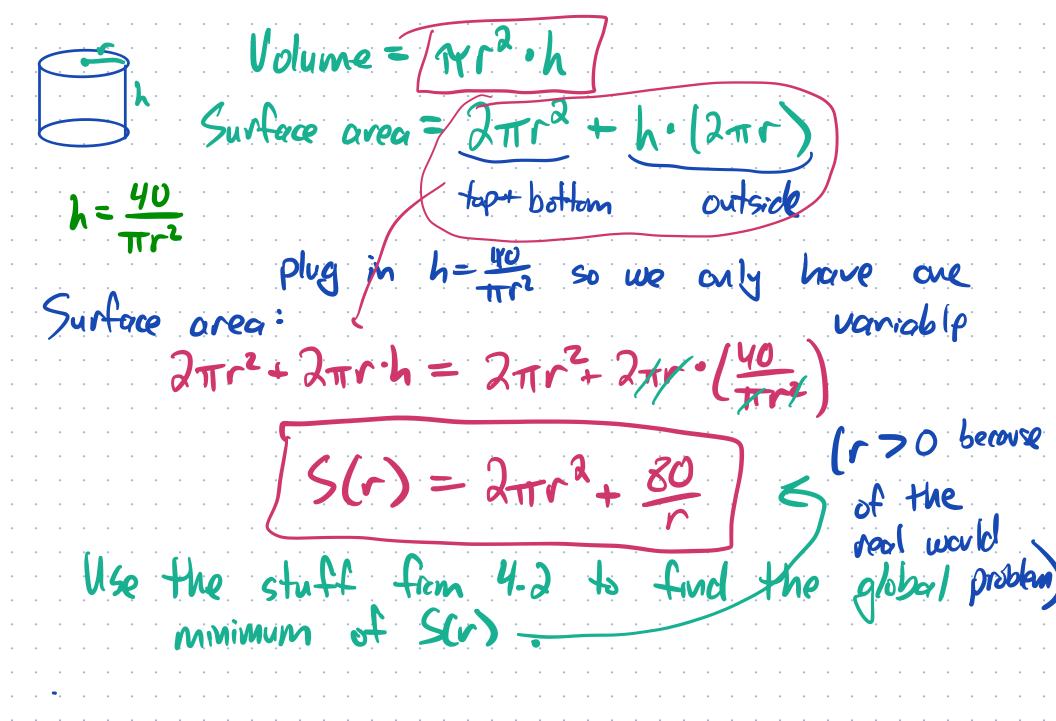
- * HW 10 due tomorrow, covers 4.1 and 4.2
- * Quiz 8 tomorrow, covers all 4.1+4.2 sugg. HW
- * HW II due Tuesday, covers 4.3+4.6, big sections!
- * Exam 3 on Wednesday, Nov. 12 covers 3.5, 3.6, 3.7, 3.9, 3.10
 41, 4.7, 4.3, 4.6

Today:

-> 43: Optimization + Modeling -> 4.6: Related Rates Office Hours
Mondays, 12-1
Wednesdays, 2-3
+ Help Desk! 12-1







$$S(r) = 2\pi r^{2} + \frac{80}{r}$$

$$S'(r) = 4\pi r + 80 \cdot (-1 \cdot r^{-2})$$

$$= 4\pi r - 80$$

$$= 4\pi r - 80 = 0$$

$$4\pi r - \frac{80}{r^{2}} = 0$$

$$\Rightarrow 4\pi r^{2} = \frac{80}{r^{2}} \cdot r^{2}$$

$$\Rightarrow 4\pi r^{3} = \frac{80}{r^{2}} \cdot r^{2}$$

$$\Rightarrow 7\pi r^{3} = \frac{80}{r^{3}} \cdot r^{2}$$

$$\Rightarrow 7\pi r^{3} = \frac{80}{r^{3}} \cdot r^{3}$$

80.1-1 047600 S'(r) undefined (SCV) defined 7

S(r) =
$$2\pi r^2 + 80$$

S'(r) = $4\pi r + 80 \cdot (-1 \cdot r^{-2})$

= $4\pi r - 80$
 $= 4\pi r - 80$

80 r^{-2}

Ocreos

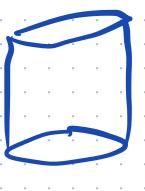
S"(r) = $4\pi r + \frac{160}{r^{3}}$

S"($3\sqrt{10}$) = $4\pi + \frac{160}{r^{3}}$ which is definitely positive

So this critical point is
a local uninimum

Why does this imply its
ortually a global inin as well?
Because this is the any critical point
so it can never go lower at any other point

$$h = \frac{40}{177^2} = \frac{40}{11(3\sqrt{24})^2} \approx 3.7$$



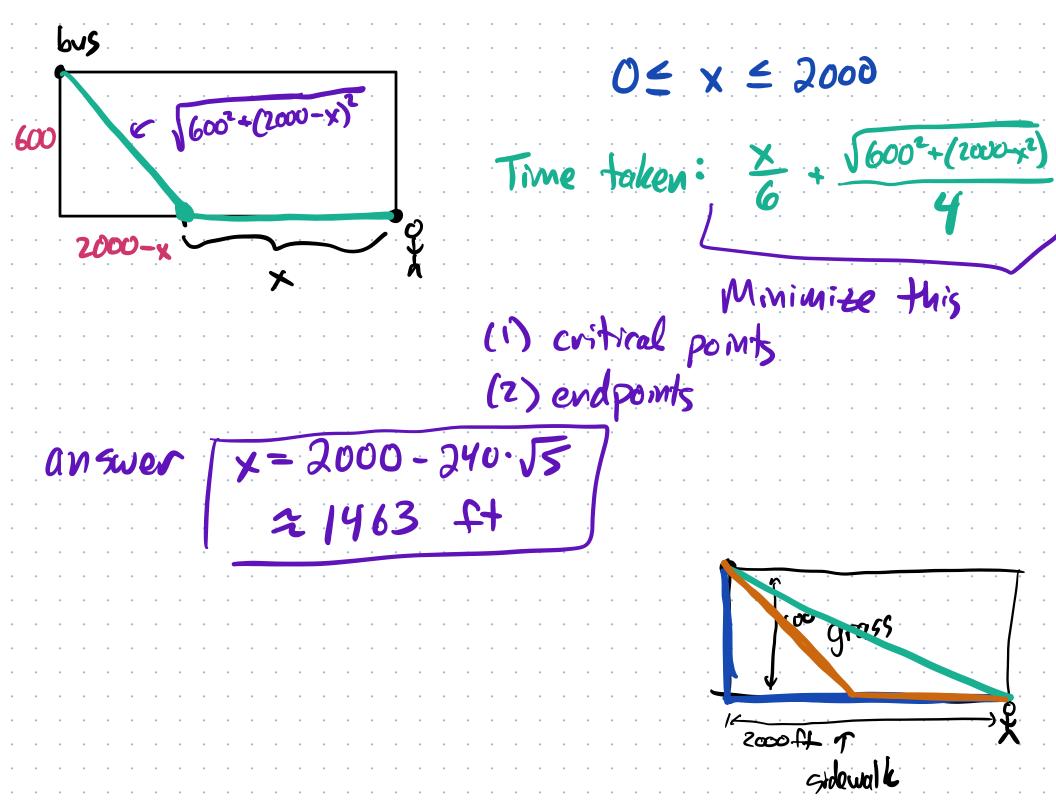
Summary of the Steps:

- (1) Identify the constraint and the quantity you are optimizing.
- (2) Solve the constraint for one variable in terms of the other
- (3) Plug in to get a function in only one variable
- (4) Optimize using the methods from 4.1 and 4.2

Ex (setyp only)

Alama wants to get to the bus stop as quickly as possible. The bus stop is across a grossy park 2000 ft west and 600ft north of her starting point. Speed walking in grass: 4ft/sec Speed walking on sidewalk: 6ft/sec. What path to the bus stop is fastest? bus stop

- 2000 FL T
- = longest, but most time on sidewalk
- = shortest distance, but all on the slow grass
- = an infinite # of poss in the middle



Ex: W	of is the maximum volume of
a close	d box (all 6 sides) with a square
· · · · <u>·</u> · · · ·	and exactly 24 m² surface area?
	Volume: x2.h
	Surface oveg: $2x^2 + 4xh = 24$
* * * * * * * * * * * * * * * * * * *	$\Rightarrow h = \frac{\lambda 4 - 2 x^2}{16}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	volume: x2.(24-2x2)
	Maximize