Math 1450 - Calculus 1

Mon, Nov. 3

Announcements:

* HW 10 due on Thursday, Nov. 6 - covers 4.1 and 4.2

* Quiz 8 on Thursday, covers cell 4.1+4.2 sugg. HW

* Exam 3 on Wednesday, Nov. 12 covers 3.5, 3.6, 3.7, 3.9, 3.10 41, 4.7, 4.3, 4.6

Jodan:

-> 4.2: Optimization -> 43: Optimization + Modeling

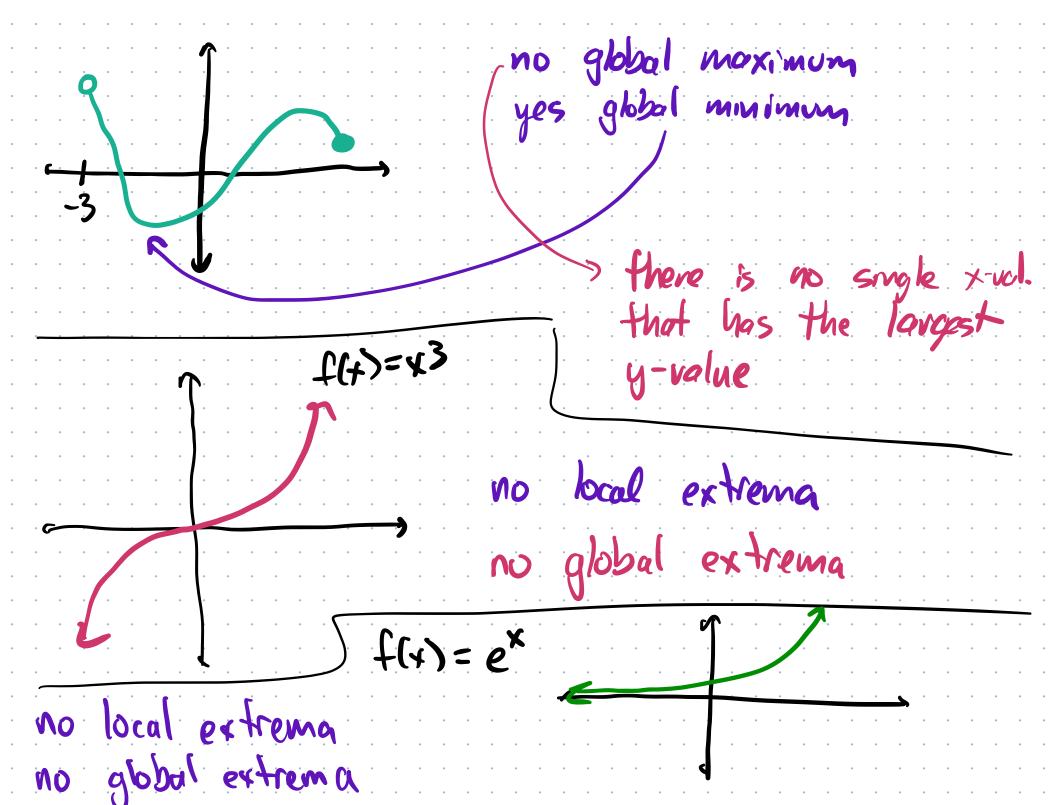
Office Hours Mondays, 12-1

Wednesdays, 2-3

+ Help Desk! 12-1

4.2: Optmization				
4.1: Goal: Find all local minima and local maxima, and inflection points.				
Optimization: Finding or smallest any	ng where a ·	function	is larges;	
Global minimum:	where is a			
	where is it	lorgest	ever	
global (a) maximum local	nin			
Global maximum: global maximum	where is it	lorgest		

Fact: If f is continuous on a closed interval [a,b] (has endpoints), then f must have both a global max and a global min somewhere in [a,b]. example local maximum global min



Every global max or min occurs at either a local mox or min or an evapoint Steps * Find the critical points. # Plug the critical points and the evalpoints it they exist back into the function to find ther y-volues Biggest = maybe the global max | if both endpoints exst, Smallest = maybe the global min I then the "maybe" becomes "definitely." If we're missing endpoints, we have to think about how the graph looks.

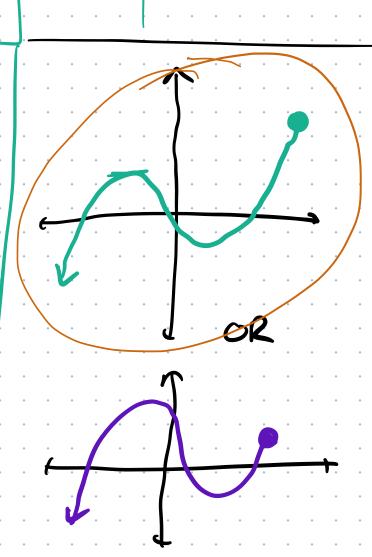
Ex: Find the global extrema of
$$f(x) = y^3 - 9x^2 - 48x + 52$$
 on the interval $(-\infty, 14]$
 $3x^2 - 18x - 48 = 3 \cdot (x + 2)(x - 8)$

$$f(-2) = (-2)^3 - 9 - (-2)^2 - 48(-2) + 52$$

= 104

$$f(8) = -396$$

 $f(14) = 360$ global maximum: (14,360)
global minimum: (8=396)
ONE
100 global minimum



Takes lots of practice.

1.3 - Optimization and Mo This section: "Optimize s Find global max" or global min	some quantity, subject to some constraint"
volume of a box surface area of a box	fixed surface area fixed volume
area of a ferced in yard	fixed amount of ferre
gas consumption	fixed distance

. .

. .

. .

. .

. .

. .

. . . .

. .

. . . .

. .

. .

