Math 1450 - Calculus 1

Fri. Oct. 24

Announcements:

- + HW 9 due next Thursday,
- * Quiz 7 next Thursday

Today:

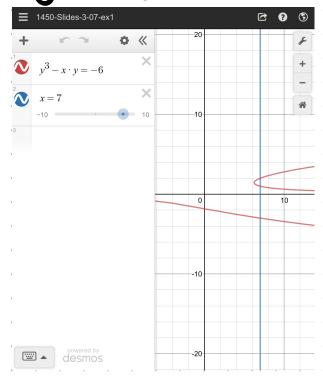
- > 3.7: Implicit Functions > 3.9: Linear Approximations

Office Hours Mondays, 12-1 Wednesdays, 2-3

+ Help Desk! 12-1

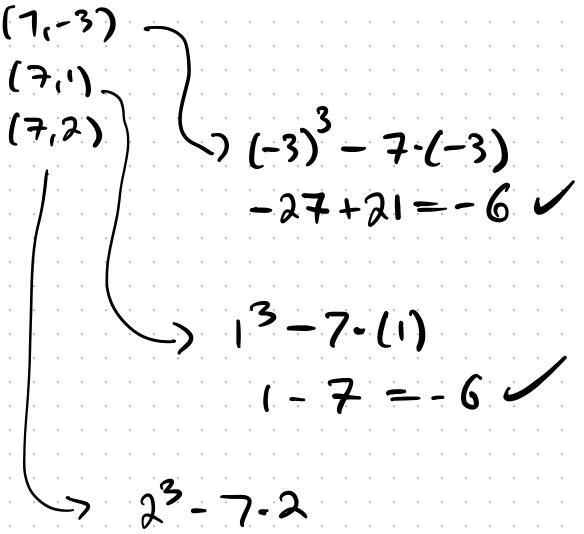
Implicit functions are defined by equations Csowething with an 's sign involving x and y. Ex: $y^2 + y^2 = 4$ not possible to write as y = T $E_{x}: \left(y^3 - x \cdot y = -6\right)$ This means "the infinite set of (xiy) points for which the equation $y^3 - xy = -6$ is true. Is (2,4) on this graph? $56 \stackrel{?}{=} -6$ No, (2.4) is not on this graph. $4^3 - 2.4 \stackrel{?}{=} -6$

 $y^3 - xy = -6$

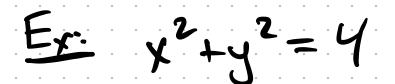


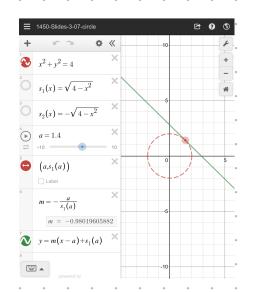
How do we find slopes of tangent lives of implicit functions?

Chain Rule

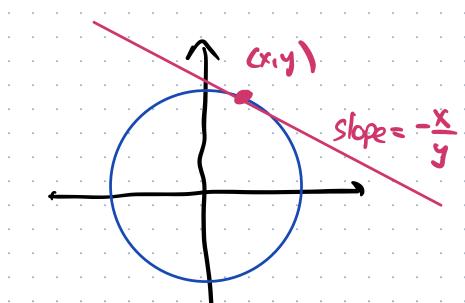


Ex:
$$x^2+y^2=4$$
 circle centered of (0,0) with radius 2 with radius 2 $\frac{d}{dx}(x^2+y^2)=\frac{d}{dx}(4)$ $\frac{d}{dx}(x^2+y^2)=\frac{d}{dx}(4)$ $\frac{d}{dx}(x^2+y^2)=0$ $\frac{d}{dx}(x^2)+\frac{d}{dx}(y^2)=0$ $\frac{d}{dx}(x^2)+\frac{d}{$





circle centered at (0,0) with radius 2



Ex
$$y^3 - xy = -6$$

$$\frac{d}{dx}(y^3 - xy) = \frac{d}{dx}(-6) \circ 0$$

$$\frac{d}{dx}(y^3) - \frac{d}{dx}(xy) = 0$$

$$3y^2 \cdot y' - (1 \cdot y + x \cdot y') = 0$$

$$3y^2 \cdot y' - (1 \cdot y + x \cdot y') = 0$$

$$5 \text{ olve for } y' : \text{ get all terms with } y'$$

$$6 \text{ on are side, all terms without an the other side}$$

$$3y^2y' - y - xy' = 0$$

$$3y^2y' - xy' = y$$

$$3y^2 - xy' = y$$

$$y^3 \rightarrow (40)^3$$

On the implicit function
$$y^{3}-xy=-6$$
, $y'=-\frac{y}{3y^{2}-x}$ what are the tangent lines at $x=7$?

What points are an the graph $x=7$? (what are the y-values?)

Plug in $x=7$: $y^{3}-7y=-6$
 $y^{3}-7y+6=0$
 $y^{3}-7y+6=0$
 $y^{3}-7y+6=0$
 $y^{3}-7y+6=0$
 $y^{3}-7y+6=0$
 $y^{3}-7y+6=0$
 $y^{3}-7y+6=0$
 $y^{3}-7y+6=0$

Not dave yet, but now we know the $y^{3}-y^{3}$

On the miplicit function
$$y^2 \times y = -6$$
, $y = 3y^2 - x$ what are the tangent lines at $x = 7$?

 $(7,1)$, $(7,2)$, $(7,-3)$

slope at $(7,1)$ is:

 $y' = \frac{3}{3} \cdot (1)^2 - 7 = -\frac{1}{4}$
 $(7,1)$

slope: $-\frac{1}{4}$
 $(7,1)$

slope: $-\frac{1}{4}$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,1)$
 $(7,$

$$\begin{array}{cccc} (7,-3) & slope & -\frac{3}{20} \\ a & b & & \end{array}$$

$$y = m \cdot (x - a) + b$$

$$y = -\frac{3}{20} \cdot (x - 7) + (-3)$$

$$= -\frac{3}{20} \times + (\frac{3}{20}) \cdot 7 - \frac{60}{20}$$

 $y-b=m\cdot(x-a)$

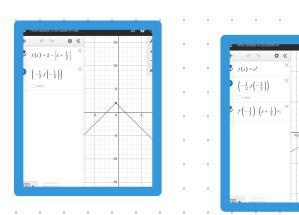
21-60=-39

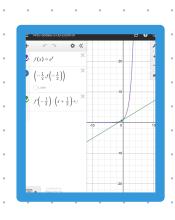
$$= -\frac{3}{20} \times + \frac{21}{20} - \frac{60}{20}$$

$$=-\frac{3}{20}\times-\frac{39}{20}$$

Not covering 3.8.

3.9: Linear Approximations and the Derivative It you zoom in very close on any tunction at an x-value where it is différentiable, then it looks like a straight line.





Take away: The tangent line at a point is a pretty good approximation of the function as you don't look too far away from the point.

