Math 1450 - Calculus 1

Wed, Oct. 22

Announcements:

* HW 8 due on Thursday > covers 3.6 only

* Q6 on Thursday, covers 3.5 + 3.6

Today:

> 3.6: Chain Rub and Inverse Functions > 3.7: Implicit Functions

Office Hours Mondays, 12-1

Wednesdays, 2-3

+ Help Desk! 12-1

Summary

$$\frac{d}{dx} \left(\ln(x) \right) = \frac{1}{x}$$
 | arctan(x) | two names

$\frac{d}{dx} \left(\ln(x) \right) = \frac{1}{1+x^2}$ | for the

$\frac{d}{dx} \left(\arctan(x) \right) = \frac{1}{1+x^2}$ | Sin'(x)

$\frac{d}{dx} \left(\arcsin(x) \right) = \frac{1}{\sqrt{1-x^2}}$ | Sin'(x)

$$+ \frac{d}{dx} \left(\operatorname{avc} \cos(x) \right) = - \frac{1}{\sqrt{1-x^2}} \left(\cos^{-1}(x) \right)$$

General Rule for finding the derivative of an inverse function.

Suppose you know f(x), f(x), and f'(x). What is $(f^{-1})(x)$?

f(f'(x)) = x (always true because this is the def. of f'')

Derivative of both sides:

$$t_i(t_{-i}(x)) \cdot (t_{-i})(x) = \frac{t_i(t_{-i}(x))}{t_i(t_{-i}(x))}$$

$$\Rightarrow (t_{-,)}(x) = \frac{t_{1}(t_{-,}(x))}{}$$

$$(f^{-1})'(x) = \frac{f'(f^{-1}(x))}{A^{5}}$$

Assume f-1 exists

Ex: Suppose
$$(f(2) = 4, f'(2) = 7.)$$

What is $(f'')'(4)$? $\frac{2}{3}$

Logarithmic Differentiation

Let
$$f(x) = x^{x}$$
. $f(1.5) = 1.5^{1.5}$

We have no way of finding $f''(y)$.

Thick: $f(x) = x^{x} = ln(x^{x}) = x^{x} \cdot ln(x)$
 $f'(x) : e^{x \cdot ln(x)} \cdot d(x \cdot ln(x))$ [chain rule]

 $= e^{x \cdot ln(x)} \cdot (x \cdot x + 1 \cdot ln(x))$

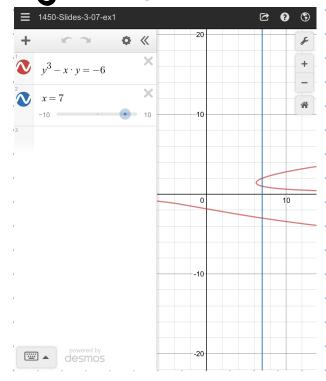
$$= \chi^{\lambda} \cdot (1 + ln(x))$$

$$\begin{aligned}
&= \frac{d}{dx} \left(e^{(x^{2}+1)^{(\sqrt{x})}} \right) = \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \right) \\
&= e^{(\sqrt{x} \cdot \ln(x^{2}+1))} \cdot \frac{d}{dy} \left(e^{(\sqrt{x} \cdot \ln(x^{2}+1))} + e^{(\sqrt{x} \cdot \ln(x^{2}+1))$$

Section 3.7 - Implicit Functions So far we've mostly dealt with explicit functions defined directly as y = [stuff with x]. Explirit: Implicit:

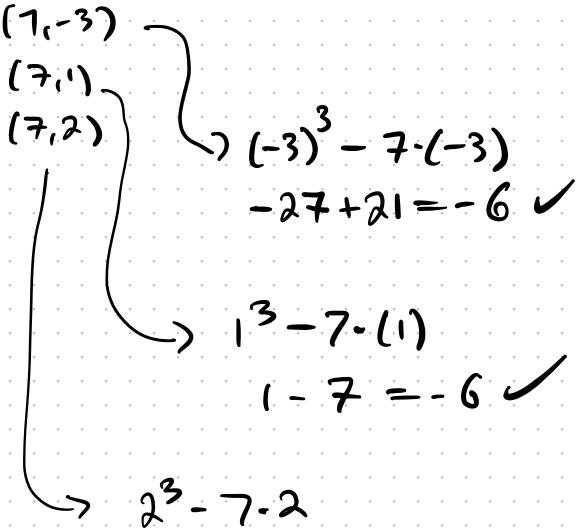
Implicit functions are defined by equations Csowething with an 's sign involving x and y. Ex: $y^2 + y^2 = 4$ not possible to write as y = T $E_{x}: \left(y^3 - x \cdot y = -6\right)$ This means "the infinite set of (xiy) points for which the equation $y^3 - xy = -6$ is true. Is (2,4) on this graph? $56 \stackrel{?}{=} -6$ No, (2.4) is not on this graph. $4^3 - 2.4 \stackrel{?}{=} -6$

 $y^3 - xy = -6$



How do we find slopes of tangent lives of implicit functions?

Chain Rule



Ex:
$$x^2+y^2=4$$
 circle contered of $(0,0)$ with radius 2

with radius 2

Take the derivative of both side:

$$\frac{d}{dx}(x^2+y^2)=\frac{d}{dx}(4)$$

$$\frac{d}{dx}(x^2+y^2)=0$$

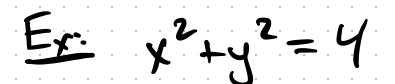
$$2x+\frac{d}{dx}(y^2)=0$$

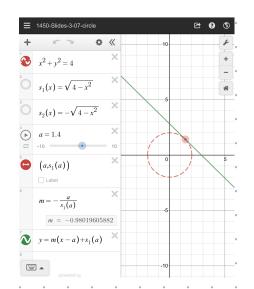
$$2x+\frac{d}{dx}(y^2)=0$$

$$2x+\frac{d}{dx}(y^2)=0$$

$$3\cdot y\cdot y'=-\frac{x}{2}$$
Solve for $y'=\frac{x}{2}$

$$y'=-\frac{x}{2}$$





circle centered at (0,0) with radius 2

Slope=