Math 1450 - Calculus 1

Wed, Sept. 24

Announcements:

- * Quiz 3 tomorrow
- 2.1, 2.2, 2.3
- * Homework 4 due tomorrow covers 2.1 and 2.2

jaypantone.com

* Reminder: Old videos from Fall 2020 are posted on the course calendar - lecture/exercises

Office Hours

Mondays, 12-1

Wednesdays, 2-3

+ Help Desk!

Today:

> 2.3: The Derivative Function > 2.4: Interpretations of the Derivative

Section 2.3 - The derivative function (Same idea as Section 2.2, in more detail) Ex: Estimate f'(x) at x = -2, -1, 0, 1, 2, 3, 4, 5.f'(-2)

X	+(x)	+ (x)
-2		5 : 5
-1	3.5	a
0	4	-0.8
•	2.5	-2.5
2		-2.5
3	-2	
4	-25	0.8
5	0	5

The derivative function

Let f(x) be some function. Its <u>olernative</u> is a new function called f'(x) that takes as input some x-value and outputs the slope (of the T.L.) of f(x) at that x-value.

$$a \rightarrow (f(a)$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

Limit Definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Ex: On the graph below, draw the function
$$f'(x)$$
.

• = pts where $f' = 0$

f'4)

First Derivative Formulas

* Let f(x) be a constant function. f(x)=k (f(x)=3)

$$f(x) = k \qquad (f(x) = 3)$$

$$f'(x) = 0$$

Ex: If
$$f(x)=x^2$$
, what is $f(x)$? $f(x)=2x$

Things we know:

$$f'(x) > 0 \text{ when } x > 0$$

$$f'(x) = 0 \text{ when } x < 0$$

$$f'(x) < 0 \text{ when } x < 0$$

Limit Definition: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{(x^2 + 3xh + h^2) - x^2}{h}$$

$$= \lim_{h \to 0} \frac{3xh + h^2}{h} = \lim_{h \to 0} \frac{h(2x+h)}{h} = \lim_{h \to 0} (2x+h)$$

$$h(3x+h) = 3xh + h^2 = 2x$$

Ex. Let
$$f(x) = \frac{1}{x-3}$$
. What is $f'(x)$?

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h-3)}{x-3} = \frac{1}{x+h-3} = \frac{1}{x+h-3}$$

commen denominator
$$\frac{1}{x+h-3} = \frac{1}{x+h-3} = \frac{1}{x+h-3} = \frac{1}{x+h-3} = \frac{1}{x+h-3}$$

$$\frac{(x+h-3)(x-3)}{(x+h-3)(x-3)} = \frac{1}{(x+h-3)(x-3)} = \frac{1}{(x+h-3)(x-3$$

Ex: Let
$$f(x) = \frac{1}{x-3}$$
. What is $f'(x)$?

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h-3)}{x-3} = \lim_{h \to 0} \frac{(x+h-3)(x-3)}{h}$$

= $\lim_{h \to 0} \frac{(x+h-3)(x-3)}{h} = \lim_{h \to 0} \frac{(x+h-3)(x-3)}{h}$

plug in $h=0$

$$f'(x)$$

$$f'(x) = \lim_{h \to 0} \frac{(x+h-3)(x-3)}{h} = \lim_{h \to 0} \frac{(x+h-3)(x-3)}{(x+h-3)(x-3)}$$

Sneak Peek of rules we'll see in Chapter 3

$$f(x) = x^2 \longrightarrow f'(x) = 2x$$

$$f(x) = x^3 \longrightarrow f(x) = 3x^2$$

End of 2.3