Math 1450 - Calculus 1

Fri, Sept. 19

Announcements:

* Exam grading in progress!

* Quiz 3 next Thursday, Sept. 25

* Homework 4 due next Thurs, Covers 2.1 and 2.2

Today:

-> 2.1: How do we measure speed?

> 2.2: The Derivative at a Point

Office Hours
Mondays, 12-1
Wednesdays, 2-3
+ Help Desk!

Another Example: Throwing a Grapefuit Table 2.1 Height of the grapefruit above the ground Velocity positive 6 t (sec) Ground 142 162 150 106 30 y (feet) Aug speed over 1st second:

dist. traveled _ 90-6 feet Second Aug spard velocity

Aug spard over 2nd second: t=1-> t=2 142-90 ft "Velocity" has a regative sign for going down "speed" is always positive

Speed us. Velocity

Velocity incorporates direction

Speed ignores direction

 Table 2.1
 Height of the grapefruit above the ground

t (sec)	0	1	2	3	4	5	6
y (feet)	6	90	142	162	150	106	30

Aug velocity from $\frac{4}{5}$ sec $\frac{106-150}{5-4} = -44$ $\frac{64}{5}$ $\frac{30-30}{10-1} = 0$ $\frac{64}{50}$

* Suppose s(t) is a function that tells you the position of an object at time t.

Average velocity from t=a to t=b is storposition.

Any vel = change in time (b)(a)

change in time (b)(a)

end start

time

Let's estimate the instantaneous velocity of the grape-fruit at t=1 with $s(t)=6+100t-16t^2$

5(1) = 6+ 100(1)-16(1)2=90

Instantaneous velocity at t=1 seems like 68 ft

To estimate the instantaneous velocity at t=a

$$h=1: \frac{5(a+1)-5(a)}{(a+1)-a} = \frac{5(a+1)-5(a)}{1}$$
 and $\frac{6a+1}{1} = \frac{5(a+1)-5(a)}{1}$

$$h = 0.1$$
: $S(a+0.1) - S(a)$ $S(a+0.1) - S(a)$ over $(a+0.1) - q$ 0.1 0.1 sec.

$$h=0.00001$$
 $S(a+0.00001)-S(a)$

Example: Suppose the position of a car in feet after t seconds is given by $s(t) = t^2$. What is the instantaneous velocity of the car ofter 3 seconds? = $\lim_{h\to 0} \frac{5(3+h)-5(3)}{h}$ = $lim \frac{(3+h)^2-(3)^2}{h \to 0}$ = $\lim_{h\to 0} \frac{9+6h+h^2-9}{h}$

$$= \lim_{h\to 0} \frac{k(6+h)}{h} = 6$$

lim 5(a)+h)-5(a)
h->0 [6 ft/sec]

Another example if time:

- 11. In a time of t seconds, a particle moves a distance of s meters from its starting point, where $s = \sin(2t)$.
 - (a) Find the average velocity between t = 1 and t = 1 + h if:
- (i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001.
 - (b) Use your answers to part (a) to estimate the instantaneous velocity of the particle at time t = 1.

Suggested Homework:

1,2,3,4,5,11,13,14,15,16,23,31

Section 22 - The derivative at a point

Average rate of change (velocity) from time a
$$\triangle$$
 position = $\frac{f(b) - f(a)}{b - q}$ to time b .

A time $b - q$

Average RoC over a small time period $t = a + a + a + a + b$

A position = $\frac{f(a+h) - f(a)}{b - q}$ = $\frac{f(a+h) - f(a)}{b + me}$ = $\frac{f(a+h) - q}{b}$

Link (aug. RoC from $\frac{f(a+h) - f(a)}{b - ro}$ = $\frac{f(a+h) - f(a)}{b - ro}$ h

lim f(ath) -f(a) h-70 h

This is called "the derivative of the function f(t) at the point t=a"

Summary

=
$$lim$$
 $f(a+h)-f(a)$
 $h\rightarrow 0$

Slopes

If you draw (a line between two points on a function (a, f(a)) and (b, f(b)), then the

slope of that line is:

 $\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a} = average RoC of f(x)$ from t = a to t = b

"secont line"

The quantity f'(a) is the slope of the curve at x=a

The tangent line of f(x) at the point x = 9 is the line with slope f'(a) that passes through the point (a, f(a))

$$f'(a) > 0$$
 means the function is increasing "going up" at the x-value q

 $f'(a) < 0 \Rightarrow \text{ decreasing at } x = q$
 $f'(a) = 0 \Rightarrow \text{ graph is flat at } x = q$

Ex: Let
$$f(x) = \sin(sx)$$
.

Is $f'(\pi)$ positive, negative, or 0?

$$f(\pi) = 0$$

$$f$$