Math 1450 - Calculus 1

Mon, Sept. 15

Announcements: tomorrow + HW 3 due (Tuesday) 11:59pm Covers 1.7-1.9

Exam 1 - Wednesday, Spm-6pm, this room * study guide on course website!

* covers 1.1-1.9

* calculaters allowed (nothing with * Activity in discussion on Thursday

Today:

> 1.9: Further Limit Calculations Using Algebra > Review, if time

Office Hours

Mondays, 12-1

Wednesdays, 2-3

+ Help Desk!

Section 19 - Further Limit Calculations Using Algebra We'll focus in this section on limits of functions of the form f(x) at $y=\pm \infty$ and g(x) at points where g(x)=0. at points where g(x)=0. acymptotes potentially vertical asymptotes (1) $lm \frac{g(x)}{g(x)}$ and $\lim_{x\to-\infty}\frac{f(x)}{g(x)}$

$lim = \frac{f(x)}{g(x)}$	If g(x)	y "grows fast	ter' than - ∞, then
	The limits		
Examples	Which grow	is faster a	5 x-> w?
	X6		3
	-X6		x3 (ignore) + and - signs)
	x3+2x+1	v5 [+x2	+x4
	$\sqrt{2} = \sqrt{x}$	US	

. . . .

. .

. . . .

. .

As
$$x \to \infty$$
 $e+p \cdot growth$
 $(1.1)^{\times}$
 v_s
 $(eventually)$
 $(\frac{1}{2})^{\times}$
 v_s
 $(\frac{1}{2})^{\times}$
 v_s
 v_s

lim as x -> - 00

$$x^{3}+2x+1 \quad vs. \quad 1+x^{2}+x^{4}$$

$$x^{1/2}$$

Examples:

lim
$$\frac{100 \times^3 + 3 \times + 5}{0.01 \times^6 + 1} = 0$$
 because the bottom $\frac{1}{9}$ as $\frac{100 \times^3 + 3 \times + 5}{0.01 \times^6 + 1} = 0$ $\frac{1}{9}$ as $\frac{1}{2}$ as $\frac{$

(2) If f(x) and g(x) grow "equally fast"

then you eliminate the slower terms and
look at what's left.

$$\lim_{x\to\infty} \frac{5x^2-3xx}{2x^2+77} = \lim_{x\to\infty} \frac{5x^2}{2x^2} = \frac{5}{2}$$

$$\lim_{x \to -\infty} \frac{5x^2 - 3x + 1}{2x^2 + 17} = \lim_{x \to -\infty} \frac{5x^2}{2x^2} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

very small pos# - very big pos #
$$\frac{4 \text{ ish}}{\text{very small}} = \frac{4 \text{ ish}}{\text{neg #}}$$

lim $\frac{x+1}{x-3} = +\infty$ $\lim_{x\to 3^+} \frac{x+1}{x-3} = -\infty$

General Rule for lim f(x)
x>c g(x) If (1) f(x) is continuous at x=c (z) f(c) #0 (3) g(c) = 0then the one-sided limits of $\frac{f(x)}{g(x)}$ as $x \to c$ are both $+\infty$ or $-\infty$. To figure out which one, think about whether f and g are postneg to the left and right of c.

Squeeze Theorem

Suppose you have two functions, a(x) and b(x) such that $a(x) \ge b(x)$ for all x. Assume also that at x=c we have $a(x) = \lim_{x \to c} b(x) = L$.

a(+) and b(+) meet at value L

Then if f(+) is some function that's always between a(x) and b(x), then

 $\lim_{x\to c} f(x) = L$

limits of a(x), b(x), f(x) at x=c are all the same

ff) gets squeezed between a and b.

$$f(x) = \chi^{2} \cdot \cos\left(\frac{1}{x}\right)$$

$$\lim_{x \to 0} f(x) \stackrel{?}{=} 0$$

$$\lim_{x \to 0} f(x) \stackrel{?}{=} 0$$