Announcements:

- * No discussion tomorrow
- * Calculators Graphing calc allowed for exams /activities,
 but you really only need a scientific
 calculator nothing with wifi capabilities

 * First HW due Thurs, Sept 4 Wiley Plus

 * First quiz same day (no calculators for quizzes)

 * Course website!

 Office Hours

jaypantone.com -> Math 1450

Today:

- > 1.1: Functions and Change > 1.2: Exponential Functions

Office Hours Mondays, 12-1

Wednesdays, 2-3

+ Help Desk!

Section 1.1 - Functions and Change

In math before calculus, you learn about all kinds of functions

-lines

- parabolas
 - -exponentials
 - -logarithms

A function is just a predefined rule that transforms numbers into other numbers.

Think of a function as a black box that you feed input #s to, and it does something and it gives you back the output #s.

input
$$\Rightarrow$$
 $f(x)$

The most important part is that you can only get one output for each input, not multiple.

Book's Definition:

A function is a rule that takes certain numbers as inputs and assigns to each a definite output number. The set of all input numbers is called the **domain** of the function and the set of resulting output numbers is called the **range** of the function.

Domain: Set of valid inputs Range: Set of outputs you get Domain: Set of valid inputs Range: Set of outputs you get

The domain can be explicit (we specify the domain when we define the function) or implicit (all real #5 that make sense when we plug them in).

A few notes before we do some examples:

- "f" is just a common name for a function.

We can use g(x), h(x), B(x), $\alpha(x)$,

- It's common to write "y" in place of "f(x)," or sometimes "y(x)".

45

Example: explicit

$$f(x) = x^2 - 3$$
, on domain $-2 \le x \le 1$

Domain:
$$-2 \le x \le 1$$

Range: $-3 \le x \le 1$

$$Q(x) = \sqrt{x-2} + 5$$

$$\frac{1}{2} = 8$$

Where is
$$x-2\geq0$$

Interval Notation:

$$a \le x \le b \quad [a,b]$$
 $a < x \le b \quad (a,b]$
 $a \le x < b \quad [a,b]$
 $a < x < b \quad [a,b)$
 $a < x < b \quad (a,b)$
 $x \ge a \quad [a,\infty)$
 $x \ge b \quad (-\infty,b]$
 $x < b \quad (-\infty,b)$

Example:
$$m(x) = -3\sqrt{x}$$

$$m(8) = -3\sqrt{8} = -2$$

$$M(-8) = -3\sqrt{-8} = -(-2) = 2$$

Domain:
$$(-\infty, \infty)$$
 Range. $(-\infty, \infty)$

Linear Functions (aka, straight lines)

Every live has a slope - how fast it goes up
or down
and a y-intercept - where it crosses the
y-axis
$$y-axis$$

 $y-int = 1$

Slope - intercept

A linear function has the form

$$y = f(x) = b + mx.$$

Its graph is a line such that

- m is the slope, or rate of change of y with respect to x.
- b is the vertical intercept, or value of y when x is zero.

A line defined by the slope and a point

Let y be the line with slope in that posses through the point (a,b).

Then:
$$y = m(x-a) + b$$

Ex: The equation for the line with slope 3 that

passes through (1,-4) is:

a b

$$y = 3 \cdot (x - 1) - 4$$

= $3x - 3 - 4 = 3x - 7$

A line defined by two points:

- 1) Compute the slope
- 2) Use the formula on the previous slide with the slope and either point

Example:

Let f(x) be the line through points (1,1) and (4,3).

Slope =
$$\frac{3}{4-1} = \frac{2}{3}$$

 $y = \frac{2}{3} \cdot (x-1) + 1$
 $= \frac{2}{3}x - \frac{2}{3} + 1 = \left(\frac{2}{3}x + \frac{1}{3}\right)$

Increasing/Decreasing Functions

- * A function is increasing if it always goes up from left to right.
- * A function is decreasing if it always goes down from left to right.

decreasing)

For every topic we'll cover, the book has more examples and more detail, so it's a great resource for practice!

Skipping for now: proportionality

Suggested HW

- * Every day I will assign suggested homework from the textbook.
- " Not collected, not graded, but you can absolutely ask about those problems in office hours, at the help desk, and in discussion.
- * The Wiley Plus problems are <u>not</u> enough practice on their own! Most people will need to do some or all of the suggested homework to moster the material.

Suggested Textbook HW:

1.1:4,5,8,9,11,12,18,35-38,39-42,45,55

Section 1.2 - Exponential Functions

Population of Burkina Faso

Year	Population	Change in I stide
sets of da	(millions)	population (millions)
2007	14.235	Talelda Come dal elda En 0.425
2008	14.660	0.435
2009	15.095	0.445
2010	15.540	0.455
2011	15.995	0.465
2012	16.460	0.474
2013	16.934	

Linear Growth - changes by a constant amount (additive fartur)

Ex: 2, 6, 10, 14, 18, +4 each time

Exponential Growth - changes by a constant percentage (multiplicative factor)

Ex: 2, 8, 32, 128, 512, ... x4 each time

Back to Burkina Faso - How can we devise a function that models this data?

Consider P(t) to be the function for the population to years after 2007, in millions.

P(0) = 14.235

P(1) = 14.660 = 14.235 . 1.03

P(2) = 15.095 = 14.660 · 1.03 = 14.235 · (1.03)2

 $P(3) = 15.540 \approx 14.235 \cdot (1.03)^3$

P(+)=14.235 · (1.03) +

What does this predict about 2025? P(x) = 14.235 · (1.03)*

$$P(18) = 14.235 \cdot (103)^{18} \approx 24.234$$

Actual population = 24.157m

Exponential Growth Formula:

rolependent variable $P(t) = 14.235, \cdot (1.03)^{(t)}$ starting value J y-intercept base

"growth rate" = base -1

1.03 - 1 = 0.03

The governal form for exponential growth is $P(\pm) = P_0 \cdot a^{\pm}$ base growth rate = a-1

For $P(\pm)$ to grow, we need a > 1 and $P_0 > 0$.

General shape:

(o.Ro)

When Ocacl, we have exponential decay

Example:

Your body filters medication from your blood at a rate that depends on the medication. Ampicillin is filtered at a rate of 60% per hour.

60% gone = 40% is left

Suppose you start with 250 mg in your blood, and let flx) be the function for the amount left after & hours.

$$f(t) = 250 \cdot (0.4)^{t}$$
growth rate = -0.6

