MATH 2100 – HOMEWORK 4

Fall 2024

due Wednesday, **October 30**, at the beginning of class

Sections 2.3, 2.4, some 2.5

This homework assignment was written in LaTFX. You can find the source code on the course website.

\star It is not permitted to use any AI tools or Large Language Models (ChatGPT, Claude, Gemini, etc) to assist with this assignment. \star

Please read the syllabus to remind yourself of our collaboration policy.

Instructions: This assignment is due at the *beginning* of class. It may be handwritten (as long as I can read it) or typed with software such as Word or Latex. Please write the questions in the correct order. Explain all reasoning.

1. Prove that for all positive integers *n*,

$$\sum_{k=0}^{n} (k \cdot k!) = (n+1)! - 1.$$

- 2. Prove that $\sum_{i=1}^{n} \frac{1}{(i)(i+1)} = \frac{n}{n+1}$ for all $n \ge 1$.
- 3. Prove that for all $n \in \mathbb{N}$, the number $9^n 1$ is divisible by 8.
- 4. Prove that for all positive integers $n \ge 4$, $n! > 2^n$.
- 5. Use induction to prove that for all integers $n \ge 0$, the quantity $2^{2n+1} + 5^{2n+1}$ is divisible by 7.
- 6. Prove that $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$.
- 7. Prove that at a completely full Milwaukee Bucks game at the Fiserv Forum, there *must* be at least two people that have both the same birthday *and* the same first initial. (Note: you will have to look up the capacity of the arena!)
- 8. Use the pigeonhole principle to prove that given any five integers, there will be two that have a sum or difference divisible by 7.
- 9. Prove that if any five points other than (0,0) are placed on the coordinate plane, then there are two points, call them *A* and *B*, such that the angle formed by the rays from (0,0) to *A* and from (0,0) to *B* is acute.