MATH 2100 – HOMEWORK 3

Fall 2024

due Wednesday, **October 16**, at the beginning of class

Sections 2.1, 2.2

This homework assignment was written in LaTEX. You can find the source code on the course website.

\star It is not permitted to use any AI tools or Large Language Models (ChatGPT, Claude, Gemini, etc) to assist with this assignment. \star

Please read the syllabus to remind yourself of our collaboration policy.

Instructions: This assignment is due at the *beginning* of class. It may be handwritten (as long as I can read it) or typed with software such as Word or Latex. Please write the questions in the correct order. Explain all reasoning.

- 1. Prove that if *a* and *b* are nonzero rational numbers, then so is $\frac{ab}{2} + \frac{1}{b}$.
- 2. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *x*, *y*, and *z* are integers and if *x* divides *y* and *x* divides *z*, then x^2 divides *yz*.

3. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *x*, *y*, and *z* are integers and if *x* divides *z* and *y* divides *z*, then *xy* divides *z*.

4. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *n* is a positive even integer, then $3^n + 1$ is divisible by 5.

5. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *n* is a positive even integer, then $n^3 + 2n$ is divisible by 4.

6. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *m* is a positive odd integer, then $m^2 - 1$ is divisible by 8.

7. Prove that the sum of any three consecutive integers (for example, 6 + 7 + 8) is always a multiple of 3.

- 8. Prove that if 3 divides $4^{n-1} 1$ then 3 divides $4^n 1$.
- 9. Prove that no perfect square can have the form 3n + 2 for an integer n.
- 10. Prove that if *n* is an even integer, then 4(n + 1) + 3 is odd.