MATH 2100 – HOMEWORK 5

Fall 2022

due Wednesday, November 16, at the start of class

Sections 3.1, 3.2, 3.3

This homework assignment was written in LATEX. You can find the source code on the course website.

Instructions: This assignment is due at the *beginning* of class. Please write the questions in the correct order. Explain all reasoning.

1. Use Venn Diagrams to determine whether the equation below is true:

$$(B \cup (A \setminus C)) \cap A = A \setminus (A \cap \overline{B} \cap C)$$

2. Use Venn Diagrams to determine whether the equation below is true:

$$(\overline{A \cup B}) \cup (\overline{A \cup C}) = (B \cup C) \smallsetminus A$$

- 3. Write each of the following sets in set-builder notation.
 - (a) The set *S* of integers that are multiples of 3 and a perfect square.
 - (b) The set *T* of positive integers that are bigger than 10 and whose ones digit is a 5.
 - (c) The set *R* of real numbers whose square is a rational number.
- 4. List five elements in each of the following sets, unless there are fewer than 5 elements in the set (in which case, justify how you know you've listed all of the elements).
 - (a) $A = \{x \in \mathbb{R} : x^2 \in \mathbb{N}\}$
 - (b) $B = \{S \subseteq \{1, 2, 3, 4\}$: the sum of the elements of *S* is even $\}$
 - (c) $C = \{q \in \mathbb{N} : q = 2k \text{ for some } k \in \mathbb{N} \text{ and } q = 2\ell + 1 \text{ for some } \ell \in \mathbb{N} \}$
- 5. Write each of the following sets in set-builder notation.
 - (a) The set *A* of real numbers that are not rational numbers.
 - (b) The set *B* of rational numbers whose numerator is 1 and whose denominator is a prime number.
 - (c) The set *C* of pairs of real numbers (r_1, r_2) that add up to a natural number.
 - (d) The set *D* of subsets of the real numbers whose size is 10 or less.
- 6. Determine whether the statement below is true or false. If true, give a few sentences of justification (a formal proof is not necessary). If false, give specific examples of sets that make the statement false.

For all sets *A*, *B*, and *C*: if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

7. Determine whether the statement below is true or false. If true, give a few sentences of justification (a formal proof is not necessary). If false, give specific examples of sets that make the statement false.

- For all sets *A* and *B*: $(A \times A) \setminus (B \times B) = (A \setminus B) \times (A \setminus B)$.
- 8. Determine whether the statement below is true or false. If true, give a few sentences of justification (a formal proof is not necessary). If false, give specific examples of sets that make the statement false.

For any two sets *A* and *B*: $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

9. Prove the following set inequality:

$$(\{n^2-1:n\in\mathbb{Z}\}\cap\{2k:k\in\mathbb{N}\})\subseteq\{4m:m\in\mathbb{Z}\}.$$

10. Prove the following set inequality:

$$(\{6k+1:k\in\mathbb{Z}\}\cup\{6m-1:m\in\mathbb{Z}\})\subseteq\{2n+1:n\in\mathbb{Z}\}.$$