Monday, Now 21-Fall'22
Lecture \#35
Announcements / Reminders

* Wiley Pus \#12 due TUESDAY night (4.3)
* Wiley Plus \#13 due the following Wednesday (4.6) 12:30 pm - $1: 30 \mathrm{gm}$ on Microsoft
* Monday: Lecture 3 Help Desk 5 on Teams
* Tuesday: Discussion $\}$ toffire Hours Wiley Plus due!
* Wed-Fri: Thanksgiving Break
*ODS Email - today is the deadline
Section 4.6 - Related Rates
This section: two quantities that are related
* radius of a sphere us. volume of a sphere
* position of a plane in flight
vs. the angle it makes with a landmark on the ground.
* speed of a car us. its fuel efficiency

As one changes over time, how does the other change?

Ex: A spherical snowball is melting. It's radius decreases at a constant rate of $2 \mathrm{~cm} / \mathrm{min}$ from an initial value of 70 cm . How fast is the volume decreasing half an hour later?

No new concepts needed.
radius over time:

$$
r=70-2 t \quad(r \text { is in } \mathrm{cm}, t \text { is }
$$ in minutes)

$$
\begin{aligned}
& \text { volume }=\frac{4}{3} \pi \cdot(\text { radius })^{3} \\
& \qquad V=\frac{4}{3} \pi(70-2 t)^{3}
\end{aligned}
$$

this is now a function that tells us the volume after t minutes

$$
\begin{aligned}
V^{\prime}(t) & =\frac{4}{2} \pi \cdot 2(70-2 t)^{2} \cdot(-2) \\
& =-8 \pi(70-2 t)^{2} \\
V^{\prime}(30) & =-8 \pi \cdot 100=-800 \pi \approx-2500 \frac{\mathrm{~cm}^{3}}{\mathrm{~min}}
\end{aligned}
$$

What if we didnit have a nice ${ }^{70-2 t}$ function for the radius at every pout in time?

Ex: A spherical snowball is melting in such a way that at the instant that its radius is 20 cm , the radius is decreasing at a rate of $3 \mathrm{~cm} / \mathrm{min}$. At what rate is the volume changing at that instant? We know r and 'r' at one instant, and want to figure V^{\prime} at the same instant.
Step 1: Write down a formula that relates the two quantities. (radius and volume)

$$
V=\frac{4}{3} \pi r^{3}
$$

Step 2: Take the derivative of both sides with respect to a new variable t.

$$
\begin{array}{ll}
V(t)=\frac{4}{3} \pi(r(t))^{3} & \left(\begin{array}{l}
" V " \rightarrow " V(t)^{\prime \prime} \\
\\
\left." r " \rightarrow " r(t)^{\prime \prime}\right)
\end{array}\right) \\
\frac{d}{d t}(V(t))=\frac{d}{d t}\left(\frac{4}{3} \pi(r(t))^{3}\right)
\end{array}
$$

$$
\begin{aligned}
& V^{\prime}(t)=\frac{4}{3} \pi \cdot 3(r(t))^{2} \cdot r^{\prime}(t) \\
& V^{\prime}(t)=4 \pi(r(t))^{2} \cdot r^{\prime}(t) \\
& \frac{d V}{d t}=4 \pi r^{2} \cdot \frac{d r}{d t} E \text { same thing in } \\
& \text { two different } \\
& \text { notations }
\end{aligned}
$$

Step 3: Plug stuff mito this to get your answer.
Question: $r=20$

$$
r^{\prime}=-3
$$

What is V ?

$$
\frac{d V}{d t}=4 \cdot \pi \cdot(20)^{2} \cdot(-3)=-4800 \pi \frac{\mathrm{~cm}^{3}}{\mathrm{~min}}
$$

Mental Check: Does the sign (tar -) make sense?

Ex A 3-meter ladder stands against a wall. The foot of the ladder moves outward at a constant speed of $0.1 \mathrm{~m} / \mathrm{s}$. When the foot is m
from the wall, how fast is the top of the lodes falling? What about when the foot is 2 m from the wall?

Know

$$
\begin{aligned}
x & =1 \mathrm{~m} \\
\frac{d x}{d t} & =0.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

What is dy? (should
be negative)
Step 1) Some formula relating x and y :

$$
x^{2}+y^{2}=3^{2}
$$

* dan't need to solve for one variable*

Step 2)

$$
\text { 2) } \begin{aligned}
\text { 2 } x & \rightarrow " x(t)^{\prime \prime} \\
" y " & \rightarrow " y(t)^{\prime \prime} \\
(x(t))^{2} & +(y(t))^{2}=9
\end{aligned}
$$

Derivative of both sides w.r.t. t

$$
\begin{align*}
& \frac{d}{d t}\left((x(t))^{2}+(y(t))^{2}\right)=\frac{d}{d t}(9) \tag{6}\\
& 2 \cdot x(t) \cdot x^{\prime}(t)+2 \cdot y(t) \cdot y^{\prime}(t)=0
\end{align*}
$$

sometimes written:

$$
2 x y^{\prime}+2 y y^{\prime}=0
$$

OR:

$$
2 \cdot x \cdot \frac{d x}{d t}+2 \cdot y^{\cdot} \cdot \frac{d y}{d t}=0
$$

Formula that relates x, y, x^{\prime}, and y^{\prime} !
Step 3) We know:

$$
\begin{aligned}
& x=1 \\
& x^{\prime}=0.1 \\
& y=? \quad \sqrt{8}
\end{aligned}
$$

Want y^{\prime}
Often weill need to frost use the initial equation $\left(x^{2}+y^{2}=9\right)$ to
solve.

$$
x=1 \Rightarrow 1^{2}+y^{2}=9 \Rightarrow y=\sqrt{8}
$$

$$
\begin{aligned}
& 2 \cdot x \cdot \frac{d x}{d t}+2 \cdot y^{\cdot} \cdot \frac{d y}{d t}=0 \\
\Rightarrow & 2 \cdot(1) \cdot(0.1)+2 \cdot \sqrt{8} \cdot\left(\frac{d y}{d t}\right)=0 \\
\Rightarrow & 2 \cdot \sqrt{8} \cdot\left(\frac{d y}{d t}\right)=-0.2 \\
\Rightarrow & \frac{d y}{d t}=-\frac{0.2}{2 \sqrt{8}}=-0.035 \mathrm{~s} / \mathrm{s}
\end{aligned}
$$

What about when $x=2$?

$$
\begin{aligned}
& x^{2}+y^{2}=9 \Rightarrow 4+y^{2}=9 \Rightarrow y=\sqrt{5} \\
& 2 \cdot x \cdot \frac{d x}{d t}+2 \cdot y \cdot \frac{d y}{d t}=0 \\
& 2 \cdot 2 \cdot(0.1)+2 \cdot \sqrt{5} \cdot\left(\frac{d y}{d t}\right)=0 \\
& \Rightarrow \frac{d y}{d t}=-0.084 \mathrm{y} / \mathrm{s}
\end{aligned}
$$

