Friday, Nov. 4 - Fall '22
Lecture \#28
Skipang $3.7+38$
Announcements / Reminders

* Wiley Pus \#10 due next Wed $(3.4,3.5,3.6,3.9)$
* Quiz 9 next Thursday (same ")
* If you are not sure if you should stay in class or withdraw, please email me and weill talk!

Section 3.6 - The Chain Rule and Inverse Functions Cmini version)
Assume you know $\frac{d}{d x}\left(x^{2}\right)=2 x$.
You can this to fund the derivative of the inverse function of x^{2}.
$f(x)=\sqrt{x}=x^{1 / 2}$ We want to fond square both sides $f^{\prime}(x)$.

$$
f(x)^{2}=\underbrace{\left(x^{1 / 2}\right)^{2}}_{x}
$$

$$
\begin{equation*}
f(x)^{2}=x \tag{2}
\end{equation*}
$$

Take the derivative of both sides.

$$
\frac{d}{d x}\left((f(x))^{2}\right)=\frac{d}{d x}(x)
$$

By the chain rule:

$$
\frac{d}{d x}\left((f(x))^{2}\right)=2 \cdot f(x) \cdot f^{\prime}(x)
$$

So $\quad 2 \cdot f(x) \cdot f^{\prime}(x)=1$
Solve for $f^{\prime}(x)$.

$$
f^{\prime}(x)=\frac{1}{2 \cdot f(x)}=\frac{1}{2 \cdot \sqrt{x}}
$$

Summary: Using the chain rule if we know the derivative of a function $h(x)$, then we can find the derivative of $h^{-1}(x)$.

Goal: Find the derivative of $\ln (x)$ using this trick.

The inverse of $\ln (x)$ is e^{x}.
Define $f(x)=\ln (x)$.
Do e to the power of each side.

$$
e^{f(x)}=\underbrace{e^{\ln (x)}}_{x}
$$

Take the deriv. of both sides:

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{f(x)}\right)=\frac{d}{d x}(x) \\
& e^{f(x)} \cdot f^{\prime}(x)=1
\end{aligned}
$$

Solve for $f^{\prime}(x)$:

$$
f^{\prime}(x)=\frac{1}{e^{f(x)}}=\frac{1}{e^{\ln (x)}}=\frac{1}{x}
$$

Fact: $\frac{d}{d x}(\ln (x))=\frac{1}{x}$.

Ex: Find the derivative of:
chain rule!

$$
\begin{aligned}
& \quad \ln (3 x+2) \\
& \text { outside }=\ln (x) \\
& \text { inside }=3 x+2 \\
& \frac{1}{3 x+2} \cdot \frac{d}{d x}(3 x+2)=\frac{3}{3 x+2}
\end{aligned}
$$

Ex: Fid the derivative of:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{\cos \left(\frac{\left.\ln \left(x^{2}\right)\right)}{f(}(\underline{g(x))})=-\frac{\sin \left(\ln \left(x^{2}\right)\right)}{f^{\prime}}(g(x)) \cdot \frac{d}{d x}\left(\ln \left(x^{2}\right)\right)\right.}{} \begin{array}{l}
=-\sin \left(\ln \left(x^{2}\right)\right) \cdot \frac{1}{x^{2}} \cdot \frac{d}{d x}(x) \\
=-\sin \left(\ln \left(x^{2}\right)\right) \cdot \frac{1}{x^{2}} \cdot(2 x) \\
=\frac{-2 \sin \left(\ln \left(x^{2}\right)\right)}{x}
\end{array}\right.
\end{aligned}
$$

Skipping 3.7 and 3.8

Section 3.9-Linear Approximaticus and The Derivative.

If you zoom in on any function at any point where its differentiable,s it looks like a straight line. I
\qquad
\qquad the deriv. exists
\rightarrow The line it looks like is the tangent line at that point.
So, we can approximate the value of a function $f(x)$ near a point $x=a$ By starting at $f(\bar{a})$ and extending the tangent live.

$$
\begin{gathered}
\begin{aligned}
& f(5)=2 K \\
& f^{\prime}(s)=1 \\
& \text { approx- } f(5.1) \\
& \approx 2.1
\end{aligned} \text {. }
\end{gathered}
$$

Formula for the π :

$$
f(x) \approx f(a)+(x-a) \cdot f^{\prime}(a)
$$

The further x gets away from a_{1} the worse the approximation gets.
(the larger $E(x)$ gets)
Ex: What is the linear approximation of $q(t)=\sin (t)$ near $t=0$?

$$
\begin{aligned}
& q(t) \approx q(0)+(t-0) \cdot q^{\prime}(0) \\
& q(0)=\sin (0)=0 \\
& q^{\prime}(t)=\cos (t) \\
& q^{\prime}(0)=\cos (0)=1
\end{aligned}
$$

$$
\begin{aligned}
& \sin (t) \approx 0+(t-0) 01 \\
& \sin (t) \approx t \quad(\text { near } t=0)
\end{aligned}
$$

