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The theory of solutions of linear ODEs is very well-developed.

It is possible to derive (almost) full asymptotic expansions
without actually solving the ODE

The asymptotic behavior of coefbcients of the series solution to
a linear ODE is a bnite sum of terms of the form

can)su"e™n' (log(n))"
(C#C,s! #Q," , u# Q,##N,P# CIx).

If the sequence has at most exponential growth then, the asymp-
totic form simplibes to a sum of terms of the form

Cap"n’ (log(n))’

(C#HC," , u#Q,##N).
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N ATURE OF SINGULARITIES

Every linear ODE has a corresponding indicial equationat each
x=T.

The roots of the indicial equation are the smallest powers of (x!
T) in each power series expansion of F(x) around x = T.
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Homogenize:
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Substitute F(x) = x" §
2 # Sep M 8.8
0= 25k I(r" 3 x" = +0  x"
81 9
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Solve lowest order coefbcient:
r=n10,3

1
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BOTTOM LINE

LODE
for F(x)

%

functional form
near each
singularity

%

asymptotic form
of the coefbcients

0= q(x)+ Po(X)F(x) + aa& pa(x)F™ (x)

F(x) X&D/E/“ — — log

Cau™’" Ylog()® (B&{" " 1,"})
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ASYMPTOTIC ESTIMATES

Suppose you know {ag, a4, . . ., agg} . What can you deduce about
the asymptotic behavior of &, asn &' ?

Rigorously: nothing.
Empirically: a lot.

Disclaimer: you can always construct pathological examples.
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THE METHOD OF DIFFERENTIAL APPROXIMANTS

The Method of Differential Approximants constructs a large
collection D-Pnite generating functions whose brst 100 terms
match these terms.

Asymptotic analysis is performed on all of these, and Oaveraged
outO to give a prediction of the actual asymptotic behavior of the
underlying sequence.
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Assume a total differential order and a degree of each polyno-
mial coefpcient:

(00+ 01X+ 0oX?) +( @0+ a11X)F(X)+( a0+ eaX+ apax?)F (X)

+(ago + agiX + @’ + X)FH(x) = 0

Since there are 11 unknowns and differential order 2, substitute
11+ 2= 13 known terms:

F(X) = fo+ fix+ fox° + 444 foxt?

After doing the algebra, set the coefbcient of x" of the LHS equal
tozerofor n= 0,1,...,10, and solve the linear system.
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FITTING TO D-FINITE FORM

1tOs likely that this only matches the brst 11 terms (or maybe a
few more), but the more initial terms you give it, the better the
resulting function approximates later unknown terms.

Repeat this with a lot of differential approximants of the same
order, varying the degrees of the polynomial coefpbcients slightly.

From each approximant we can extract the location of singu-
larities and the critical exponents as before, but we have to be
careful about OaveragingO them in a way that makes sense.



EXAMPLE 1: Av(4123423)

Let a, be the number of permutations of length n avoiding the
patterns 4123 and 4231. We know the Prst 1000 terms of the
series, but no generating function is known or conjectured.
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Dominant singularity at

x = 0.20092861430290850630066749465511761874842136315274588937508575345a%52139

with critical exponent

" 0.99999999999999999999999999999999999999999999999999999999999999%MPFE0

Implies a, $ C4a(4.97689193..)".

Other singularities:
I x= 0.206146644589292711596985588400 2°
! x= 0.20724531832263 10 4
! x = 0.2487094569& 0.00390217832+ (1+ i)10 1
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Dominant singularity at

x = 0.07490791222594518 10 17

with critical exponents 2, 3,4, .. ..

Suggests a logarithmic term. a, $ C4(13.3497...)"n" 3log(n)?”.
Other singularity: x = ! 2.8820247791& 10 1%,

# $

256
= 952 =1 2.8820247791598299431
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OTHER USES OF THEDA M ETHOD

If you have a conjectured value for the growth rate, you can bias
your approximants, giving a better estimation of the exponent.

In some cases, you can use the differential approximants to
guess the next OfewO terms in the sequence, and then plug these
back into the ratio method to get a better estimation.
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A LOT LEFT TO EXPLORE...

! Better description of asymptotics (including irregular
singularities)

' More general approximant forms (ratio of D-Pnite)

! Open-source code (coming soon)



Thanks for coming!





