
The Method of Differential Approximants

Jay Pantone
Dartmouth College

Hanover, NH

Schloss Dagstuhl, Warden, Germany

February 18, 2016



A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

CLASSIFICATION OF GENERATING FUNCTIONS

A generating function F(x) is differentially Þnite (D-Þnite) if
there is a linear differential equation with polynomial (in x)
coefÞcients that hasF(x) as a solution.

0 = ! 4 +
!
9x2 ! 9x + 4

"
F(x) + x (27x ! 5) (x ! 1)F!(x)

+ x2(9x ! 1)(x ! 1)F!!(x)

=" F(x) = [ messy]
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

SINGULARITY OF SOLUTIONS TO LODES

The theory of solutions of linear ODEs is very well-developed.

It is possible to derive (almost) full asymptotic expansions
without actually solving the ODE.

The asymptotic behavior of coefÞcients of the series solution to
a linear ODE is a Þnite sum of terms of the form

C á(n!)sµneP(n! )n! (log(n)) "

(C # C, s, ! # Q, " , µ # Q, # # N, P # C[x]).

If the sequence has at most exponential growth then, the asymp-
totic form simpliÞes to a sum of terms of the form

C áµnn! (log(n)) "

(C # C, " , µ # Q, # # N).
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

LOCATION OF SINGULARITIES

Suppose 0= q(x)+ p0(x)F(x)+ p1(x)F!(x)+ á á á+ pn(x)F(n) (x), for
polynomials q and pi.

Every singularity of F(x) must also be a root of pn(x).
(The converse is false).

0 = ! 4 +
!
9x2 ! 9x + 4

"
F(x) + x (27x ! 5) (x ! 1)F!(x)

+ x2(9x ! 1)(x ! 1)F!!(x)

=" possible singularities:
1
µ

= !0,
1

9
, 1.
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

N ATURE OF SINGULARITIES

Every linear ODE has a corresponding indicial equationat each
x = T.

The roots of the indicial equation are the smallest powers of (x !
T) in each power series expansion of F(x) around x = T.
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

N ATURE OF SINGULARITIES

Start with:

0 = " 4 + ( 9x2 " 9x + 4)F(x) + x (27x " 5) ( x " 1)F! (x) + x2(9x " 1)( x " 1)F!! (x)

Homogenize:

0 = " 36(2x" 1)F(x)" 2(180x2" 146x+ 18)F! (x)" 4x(63x2" 62x+ 7)F!! (x)" 4x2(9x" 1)( x" 1)F!!! (x)

Substitute F(x) =
!

x " 1
9

" r
:

0 =
32

81
r(r " 1)( r " 3)

#
x "

1

9

$ r" 2

+ O

%#
x "

1

9

$ r" 1
&

Solve lowest order coefÞcient:

r = !0, !1, 3.

=" critical exponent at
1

9
is ! = ! 3.
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

THE STANDARD FUNCTION SCALE

Translation from functional form near a singularity to asymp-
totic form of the coefÞcients:

F(x) #
x$ 1/ µ

#
1

1 ! µ x

$ ! #
1

µ x
log

#
1

1 ! µ x

$$ "

! %&{ 0, " 1, " 2, . . .} ! & { 0, " 1, " 2, . . .}

" %&Z# 0
1

! ( ! ) µ nn! " 1(log(n)) "
$'

j= 0

Cj

(log(n)) j
µ nn! " 1(log(n)) "

$'

j= 1

Dj

(log(n)) j

" & Z# 0
1

! ( ! ) µ nn! " 1
$'

j= 0

Ej (log(n))

nj
µ nn! " 1

$'

j= 0

Fj (log(n))

nj

Example: (µ = 9, ! = ! 3, " = 1) =" an $ C á9nn" 4.
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

BOTTOM LINE

LODE
for F(x)

%

functional form
near each

singularity

%

asymptotic form
of the coefÞcients

0 = q(x) + p0(x)F(x) + á á á+ pn(x)F( n) (x)

F(x) %
x& 1/µ

#
1

1 " µx

$ " #
1

µx
log

#
1

1 " µx

$$ #

C áµnn" " 1(log(n)) B (B & { " " 1, " } )
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

A SYMPTOTIC ESTIMATES

Suppose you know { a0, a1, . . . , a99} . What can you deduce about
the asymptotic behavior of an asn & ' ?

Rigorously: nothing.
Empirically: a lot.

Disclaimer: you can always construct pathological examples.
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

THE M ETHOD OF DIFFERENTIAL A PPROXIMANTS

The Method of Differential Approximants constructs a large
collection D-Þnite generating functions whose Þrst 100 terms
match these terms.

Asymptotic analysis is performed on all of these, and Òaveraged
outÓ to give a prediction of the actual asymptotic behavior of the
underlying sequence.
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

FITTING TO D-FINITE FORM

Assume a total differential order and a degree of each polyno-
mial coefÞcient:

(a00+ a01x+ a02x2)+( a10+ a11x)F(x)+( a20+ a21x+ a22x2)F!(x)

+( a30 + a31x + a32x2 + x3)F!!(x) = 0

Since there are 11 unknowns and differential order 2, substitute
11+ 2 = 13 known terms:

F(x) = f0 + f1x + f2x2 + á á á+ f12x
12

After doing the algebra, set the coefÞcient of xn of the LHS equal
to zero for n = 0, 1, . . . , 10, and solve the linear system.

11 of 30
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

FITTING TO D-FINITE FORM

ItÕs likely that this only matches the Þrst 11 terms (or maybe a
few more), but the more initial terms you give it, the better the
resulting function approximates later unknown terms.

Repeat this with a lot of differential approximants of the same
order, varying the degrees of the polynomial coefÞcients slightly.

From each approximant we can extract the location of singu-
larities and the critical exponents as before, but we have to be
careful about ÒaveragingÓ them in a way that makes sense.
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

EXAMPLE 1: Av(4123, 4231)

Let an be the number of permutations of length n avoiding the
patterns 4123 and 4231. We know the Þrst 1000 terms of the
series, but no generating function is known or conjectured.
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

EXAMPLE 1: Av(4123, 4231)

Dominant singularity at

x = 0.20092861430290850630066749465511761874842136315274588937508575345652139± 10" 71

with critical exponent

" 0.999999999999999999999999999999999999999999999999999999999999999999980± 10" 67

Implies an $ C á(4.97689193. . .)n.

Other singularities:
! x = 0.20614664458929271159698558840± 10" 29

! x = 0.20724531832263± 10" 14

! x = 0.24870945696± 0.00390217832i ± (1 + i)10" 11
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EXAMPLE 2: 2-COLORABLE MATCHINGS
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

EXAMPLE 2: 2-COLORABLE MATCHINGS

Dominant singularity at

x = 0.07490791222594518± 10" 17

with critical exponents 2 , 3, 4, . . ..

Suggests a logarithmic term. an $ C á(13.3497. . .)nn" 3 log(n)??.

Other singularity: x = ! 2.88202477916± 10" 11.
#

=
256
9$2 = ! 2.8820247791598299431

$
.
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

OTHER USES OF THEDA M ETHOD

If you have a conjectured value for the growth rate, you can bias
your approximants, giving a better estimation of the exponent.

In some cases, you can use the differential approximants to
guess the next ÒfewÓ terms in the sequence, and then plug these
back into the ratio method to get a better estimation.
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A NALYTIC COMBINATORICS DIFFERENTIAL A PPROXIMANTS

A LOT LEFT TO EXPLORE...

! Better description of asymptotics (including irregular
singularities)

! More general approximant forms (ratio of D-Þnite)
! Open-source code (coming soon)
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Thanks for coming!
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