LECTURE 17 - THE KERNEL METHOD

JAY PANTONE

The Kernel Method is a technique that allows one to start with a bivariate functional equa-
tion for f(z, u) with another unknown of the form f(z,0) (or similar), and solve for f(z,0)
directly. Once f(z,0) is in hand, usually the full f(z, u) can be recovered as well.

Let P(yo,y1,2, 1) be a polynomial with complex coefficients, and suppose f(z,u) satisfies
the functional equation

f(zu) = P(f(z,u), f(2,0),2,u).

In order for the kernel method to work:

(1) This functional equation must be well-defined, in that f(z, u) doesn’t cancel on both
sides.

(2) The right-hand side must be linear in f(z,u), i.e., [yk]P = 0 for all k > 2.
(3) The coefficient of f(z, 1) on the right-hand side is a polynomial in z and u only.
The Kernel Method is executed as follows.

(1) Gather all terms involving f(z, u) to the left-hand side, writing the equation as

K(z,u)f(z,u) = Q(f(2,0),zu).
The term K(z, u) is called the kernel.
(2) Solve the equation
K(z,u) =0
in terms of u. This gives a set of solutions u1(z), .. ., ux(z), such that K(z, u;(z)) = 0.

(3) Substitute u = u;(z) into both sides:

K(z,ui(2))f (2, ui(2)) = Q(f(2,0), 2, ui(2))-

As the left-hand side is zero by design, we have eliminated f(z, u) and obtained
the equation

0= Q(f(2,0),2 ui(z)),

which involves only f(z,0) and z.

(4) Solve for f(z,0) (or, if an explicit solution is unobtainable, be happy with the mini-
mal polynomial found in the last step). You will obtain one solution for each u;(z),
one of which will have the power series expansion desired; test the solutions ob-
tained by calculating power series expansions of each one to determine which it
is.
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Example: In the previous lecture we found the following function equation for the gener-
ating function f(z, u) that tracks states of stack operations, where z marks the number of
pops that have been performed and u marks the number of entries in the stack:

flzu) = 1+ uf(z,u) + = (f(z,u) = f(,0)).

To apply the Kernel Method, we first gather all terms involving f(z,u) to the left-hand
side:

z z
<1 —u— a) flz,u)=1- ;f(z,()).
To make the kernel a polynomial, multiply both sides by u:

(u—u?—z2) f(z,u) = u—2zf(z,0).
The kernel is K(z,u) = —(u? — u + z). By the quadratic equation, K(z, ) = 0 has solutions

1+£v1-4z
—

Substituting this into both sides gives

0= 71i 21_42 —zf(z,0),

and so

F(z,0) = 1j:\2/l—4z

The series expansion of the ‘4’ solution is
1+v1—4z
2z N
while the expansion of the ‘—" solution is
1-vV1—-4z

2z

Clearly, the ‘—’ solution is f(z,0). Typically, the full f(z, u) is not needed as u was simply a
catalytic variable. However, if desired, one can now obtain it. By substituting the solution
for f(z,0) into the original functional equation, we see that

1—@)

zl—1—z-222—...,

=1+4+z+222452%+---.

2z

fleu) =1+ uf(zu)+ (f(z,u> -

This is linear in f(z, u) (of course) and so the solution is easily determined to be

1—-2u—+1-—4z
flzu) = 2(zz—u+u?) -

Many more examples of this ilk can be given, but they all follow the same basic procedure.

The Kernel Method and its extensions are a very active area of research. While the restric-
tions placed on the Kernel Method limit its use, numerous extensions have been recently
derived.
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(1) When the equation is not linear in f(z, u) but instead quadratic, then Tutte’s qua-
dratic method can be employed.

(2) If there is still a single catalytic variable but there are more unknowns (e.g., f(z,1),
fu(z,1), fuu(z,1), etc.), then more general resultant methods can help.

(3) In more intricate cases (such as more than one catalytic variable), the (rigorous)
technique of guess-and-check will be helpful.



