
LECTURE 16 – BIVARIATE ENUMERATION AND CATALYTIC VARIABLES

JAY PANTONE

CATALYTIC VARIABLES

We’ve previously seen the utility of bivariate generating functions in studying the struc-
ture of combinatorial objects. By adding in a new variable to track a particular feature of
an object, one can obtain a wealth of information including moments of the distribution
(expected value, variance, etc.) and whether that distribution is concentrated about the
mean.

We study here a new application of bivariate generating functions: enumeration of count-
ing sequences. Previously, we have found bivariate generating functions by taking a sym-
bolic construction for the univariate case and adding markers. In these instances, we could
find the counting sequence for the underlying objects with no need for the bivariate form.
However, it is often the case that in order to find the (univariate) counting sequence for
the class one must start with a more refined bivariate (or multivariate) functional equation
which can them (sometimes) be solved to find the univariate generating function.

To illustrate this phenomenon, we will consider a class question from the field of pattern-
avoiding permutations. This result appears in Knuth’s The Art of Computer Science in Sec-
tion 2.2.1, and is one of the earliest in the area.

Let π of length n be a permutation, thought of in one-line notation. Let πi be the ith entry
of π. For example, π = 74356128 is a permutation of length 8, and π4 = 5. We say that
π contains a smaller permutation σ of length k ≤ n if there exist indices i1 < i2 < . . . < ik
such that the entries {πi1 , πi2 , . . . , πik} are in the same relative order as σ. For instance, the
permutation π above contains 321 in a number of places (e.g., 743, 762, etc.) but avoids 132
(i.e., there are no three entries of π that when left-to-right go “smallest, biggest, middle”).

This pattern-containment relation induces a poset on the set of all permutations. A permu-
tation class C is a downset in this poset. Any permutation class can be defined uniquely
by the set of minimal permutations that it avoids, called its basis. The class with basis B is
denoted Av(B).

A stack is an object from computer science that consists of a single column of storage into
which one may push entries from an input list and from which one may pop entries to
an output list. Knuth asked which permutations can be generating by feeding the identity
permutation 12 · · · n into the stack. For example, the permutation 2314 can be formed by
the following operation sequence.

1234
=⇒ 1

234
=⇒

1
2

34
=⇒

1

2 JAY PANTONE

2
1

34
=⇒

2

1
3

4
=⇒

23
1

4
=⇒

231 4
=⇒

231
4 =⇒

2314

It is not hard to see that a permutation can be generated by a stack if and only if it avoids
312. To find the enumeration of this class Av(231), we will use the stack operations to
set up a bivariate generating function. This is a great example of an instance where we
cannot immediately find a univariate generating function, but by creating a more refined
structural decomposition involving a second property tracked by u we can accomplish the
same goal. In these situations, u is called a catalytic variable: we don’t really care about
what it tracks except that we need it in the first stage to get function equation, and then we
eliminate it later to recover the univariate generating function.

Consider a stack with an infinite increasing permutation 123 · · · ready to be fed into the
input. A permutation can be generated by the stack if there is some sequence of pushes
and pops that leads to a complete permutation of size n in the output and nothing inside
the machine. Critically, with such a simple machine every different push/pop sequence
leads to a different permutation in the output.

Let f (z, u) be the bivariate generating functions for states of the stack while using this in-
finite input sequence to generate permutations, where z tracks the number of pops that
have been done (i.e., the length of the output queue), and u tracks the number of entries
currently in the stack. The generating function f (z, u) is simultaneously tracking all pos-
sible evolutions of the machine and all permutations that these lead to. To illustrate, let
us repeat the steps in generating the permutation 2314 now stating the term in f (z, u) that
each state corresponds to.

1234

1

=⇒ 1
2345

u

=⇒ 1
2

3456

u2

=⇒

2
1

3456

uz

=⇒
2

1
3

4567

u2z

=⇒
23

1
4567

uz2

=⇒

231 4567

z3

=⇒
231

4
5678

uz3

=⇒
2314 5678

z4

LECTURE 16 – BIVARIATE ENUMERATION AND CATALYTIC VARIABLES 3

The states of the machine that have a complete permutation in the output are exactly those
whose u term has a power of zero. Thus if we can find the generating function f (z, u)
described above, then the univariate generating function for Av(312) is f (z, 0).

The construction of f (z, u) relies on the following structural decomposition: every state of
the machine is either

(1) the initial empty state,

(2) arises from pushing something into the stack, or

(3) arises from popping something from a non-empty state.

This immediately gives the functional equation

f (z, u) = 1︸︷︷︸
initial
state

+ u f (z, u)︸ ︷︷ ︸
push to

stack

+
z
u
(f (z, u)− f (z, 0))︸ ︷︷ ︸

pop from
nonempty state

.

On the face of it, this is a single equation with two unknowns (f (z, u) and f (z, 0)), but of
course these two unknowns are inextricably linked. We will see shortly how this relation-
ship can be exploited to solve for f (z, 0) using a technique known as the kernel method.

HOPS, STEPS, AND JUMPS

Acknowledgement
Much of the material in this section originates from discussions with David Bevan.

We now examine another class of combinatorial problems that admits a nice translation
to bivariate generating functions (with a single catalytic variable). A walk on the half-line
[0, ∞) is a sequence of steps that starts at 0 and never becomes negative. A Dyck path,
though often drawn as a two-dimensional object, is really just a walk on the half-line with
legal step set {−1, 1}.

Given any class of walks with a specified set of restrictions, we will consider f (z, u) to
be the bivariate generating function for the walks where z tracks the length of the walk
and u tracks the final end-point. In keeping with the literature, we may refer to this final
end-point as height or altitude. Every such f (z, u) has the form

f (z, u) = f0(z) + f1(z)u + f2(z)u2 + · · · ,

where fi(z) is the generating function for walks in the class that end at i. In particular,
f0(z) is the generating function for walks that end at the origin. Each fi(z) can be found
from f (z, u) by differentiating i times with respect to u, dividing by i!, and substituting
u = 0.

We consider walks that are built from combinations of three types of moves: hops, steps,
and jumps.

• A hop is a step from height k to any height in {0, 1, . . . , k− 1}.

4 JAY PANTONE

• A step of size s, for s ≥ 0 is either:

– an up-step from k to k + s, or

– a down-step from k to k− s (only allowed if k ≥ s).

• A jump to j is a step from any height to j.

Many types of walks can be formed by taking a union of these allowed moves at each step,
and concatenating these moves together. For example, Dyck paths are a special case of
walks where the moves allowed at any point are a step of size +1 and a step of size −1 (as
long as the current position is at least 1).1

In order to form the associated functional equations, we must determine the effect of each
type of move on terms an,kznuk. We shall start with the easiest such move: the up-step of
size s.

Steps. For any current walk of length n at position k, taking an up-step of size s trans-
forms an,kznuk into an,kzn+1uk+s. Of course, we want to operate on the level of generating
functions, not term-by-term. To do this, we realize that we can enact this transformation
on every terms simultaneously with the transformation

S+s[f (u, z)] = zus f (u, z).

For a down-step of size s, we must be careful not to let the walk pass below the origin. To
ensure this, we only act on those terms of f (z, u) for which the exponent of u is at least s.
On the term level, this amounts to

an,kznuk 7−→
{

0, k < s
an,kzn+1uk−s, k ≥ s

On the global generating function level, we can accomplish this with the transformation

S−s[f (u, z)] = zu−s(f (z, u)− f0(z)− f1(z)u− · · · − fs−1(z)us−1).

Jumps. A jump to j is a move in which a walk travels from any height to height j. For each
term of the generating function f (z, u) this is equivalent to an,kznuk 7→ an,kzn+1uj. On the
global level, this is

Jj[f (u, z)] = zuj f (z, 1).

Substituting u = 1 into f (z, u) has the effect of ignoring the position of the walks (or more
precisely, of deleting the record of position). Then, the multiplication by uj repositions
every walk to height j.

One can also define a more refined version of jumps: A jump from i to j moves those walks
at height i directly to height j. All other walks cease. Of course, in practice this would be
combined with other allowed moves (e.g., perhaps every walk at height k can jump up to
height 2k; this is an infinite sum of refined jumps).

1These more general walks are the meanders that appeared on a recent homework assignment.

LECTURE 16 – BIVARIATE ENUMERATION AND CATALYTIC VARIABLES 5

Hops. A hop (or, a hop down) is a move in which any walk at height k can fall to any
altitude in {0, 1, . . . , k− 1}. On the term level, this equates to

an,kznuk = an,kzn+1
(

u0 + u1 + u2 + · · ·+ uk−1
)
= an,kzn+1 1− uk

1− u
.

This is a bit trickier to enact on the level of generating functions. It helps to think of the
right-hand side of the above equation as

z
1− u

(
an,kzn − an,kznuk

)
.

We can now see that a hop equations to the generating function transformation

H[f (z, u)] =
z

1− u
(f (z, 1)− f (z, u)) .

Before we dive into how we can build classes of walks with these operators, we should
point out something interesting about the transformation for hops.

Consider a bivariate generating function g(z, u) = ∑
n,k≥0

gn,kznuk. Assume that g(z, 1) is

a valid formal power series in z and let gn be the coefficient of zn in g(z, 1). We see by
algebraic manipulation that

[
g(z, 1)− g(z, u)

1− u

]
u=1

=

∑
n≥0

gnzn − ∑
n,k≥0

gn,kznuk

1− u


u=1

=

∑
n≥0


gn − ∑

k≥0
gn,kuk

1− u

 zn


u=1

=

∑
n≥0

∑
k≥0

gn,k − ∑
k≥0

gn,kuk

1− u

 zn


u=1

=

∑
n≥0

∑
k≥0

gn,k(1− uk)

1− u

 zn


u=1

=

[
∑
n≥0

(
∑
k≥0

gn,k(1− uk)

1− u

)
zn

]
u=1

=

[
∑

n,k≥0
gn,k(1 + u + · · ·+ uk−1)zn

]
u=1

= ∑
n,k≥0

kgn,kzn

= gu(z, 1).

6 JAY PANTONE

As this computation results in the derivative of g with respect to u, it is common to call the
expression

g(z, 1)− g(z, u)
1− u

the discrete derivative with respect to u. We will soon see the composition of hops results in
these derivatives appearing in our functional equations.

Crafting Walks. We will consider a few examples of walks whose bivariate generating
functions can be easily determined by the operations above. Although these are all de-
scribed as walks, they have combinatorial applications to many different types of objects
and so are very broadly applicable.

Example: Consider the class of walks in which every point the height of the walk can stay
the same, increase by one, or decrease by one. This corresponds to a step set of {−1, 0, 1},
though we should note that our operators work in more general cases where the step set
is not fixed. As such we recover the form

f (z, u) = 1 + S−1[f (z, u)] + S+0[f (z, u)] + S+1[f (z, u)],

where the term 1 accounts for the initial walk of length and height 0. Applying the trans-
formations for each operator, we get

f (z, u) = 1 +
z
u
(f (z, u)− f (z, 0)) + z f (z, u) + zu f (z, u).

Although we have not yet seen how to solve equations of this form, the univariate gener-
ating functions for these walks counted by length, f (z, u) is easily recovered by using the
kernel method.

Example: For the next example, consider the class of walks that may increase their altitude
by at most 1 per step, may stay at the same height, or may hop down to any height between
0 and the current height. Then,

f (z, u) = 1 + S+1[f (z, u)] + S+0[f (z, u)] + H[f (z, u)],

which gives the functional equation

f (z, u) = 1 + zu f (z, u) + z f (z, u) +
f (z, 1)− f (z, u)

1− u
.

The kernel method can be used to solve for f (z, 1), and then since the equation for f (z, u)
is linear in f (z, 1) we can solve for f (z, u).

Example: In this example we obtain an equation that cannot be solved by the kernel
method (at least not in an elementary way). We study walks with the step set {−2,−1, 0, 1, 2}.
These satisfy

f (z, u) = 1 + S−2[f (z, u)] + S−1[f (z, u)] + S+0[f (z, u)] + S+1[f (z, u)] + S+2[f (z, u)],

and so

f (z, u) = 1 +
z

u2 (f (z, u)− f0 − u f1) +
z
u
(f (z, u)− f0) + z f (z, u) + zu f (z, u) + zu2 f (z, u)

= 1 +
z

u2 ((1 + u + u2 + u3 + u4) f (z, u)− (1 + u) f0(z)− u f1(z)).

LECTURE 16 – BIVARIATE ENUMERATION AND CATALYTIC VARIABLES 7

Recalling that f0(z) = f (z, 0) and f1(z) = u fu(z, 0), we have

f (z, u) = 1 +
z

u2 ((1 + u + u2 + u3 + u4) f (z, u)− (1 + u) f (z, 0)− u fu(z, 0)).

This is a single equation with three (linked) unknowns. Instead of the kernel method, we
will use a (rigorous!) method that we call guess-and-check.

Example: Our last example shows how walks can be used to count other combinatorial
objects. Consider the set of permutations of length 2n that avoid a 321 pattern, such that
each of the n adjacent pairs contain an increasing pair of entries.2

The translation to walks is as follows. An inversion in a permutation is a pair of indices
i < j such that πi > πj. Given a permutation π, let k(π) be the number of entries of π
whose value is greater than that of the rightmost point of π that is part of an inversion. To
construct a permutation of length 2n + 2 from a permutation of length 2n, we insert two
entries to right-hand end of π. They must be in increasing order to satisfy the definition of
this class. We must determine how k is affected by these insertions. For brevity we leave
the reader to verify that the allowable transitions of k while inserting these two entries are
satisfied by

f (z, u) = 1 + H1[H1[f (z, u)] + H2[f (z, u)] + S+2[f (z, u)],
where Hi = S+i ◦ H, we can be imagined as a hop from k to {i, i + 1, . . . , k + i − 1}. This
results in a functional equation of the form

f (z, u) = 1 +
z

(1− u)2 (u
2(1− u + u2) f (z, u)− u3 f (z, 1) + u(1− u) fu(z, 1)).

To solve this functional equation we will again employ the guess-and-check methodology.

2This is similar to a class of objects counted in [BEVAN, D., LEVIN, D., NUGENT, P., PANTONE, J., PUD-
WELL, L., RIEHL, M., AND TLACHAC, M. L. Pattern avoidance in forests of binary shrubs. arXiv:1510.08036
[math.CO], 2015].

	Catalytic Variables
	Hops, Steps, and Jumps
	Steps
	Jumps
	Hops
	Crafting Walks

