LECTURE 4 - COMBINATORIAL CLASSES AND ADMISSIBLE
CONSTRUCTIONS

JAY PANTONE

COMBINATORIAL CLASSES
We'll first formalize the notion of a set of combinatorial objects and their associated gener-
ating function.
Definition: A combinatorial class is a set A together with a size function | - | 4, such that
(1) the size of an element is a non-negative integer, and
(2) the number of elements of a given size is finite.

For a class A, we define A, to be the objects in A of size n and a, to be the number of
objects in A of size n. The counting sequence of a class is the sequence (a,),>0, and the
generating function of a class is

A(z) = ioanz” =) zll,

Think of the generating function as a collapsing of the class, where all internal structure
other than size is ignored. This is analogous to describing the chemical molecule glucose
as CsH120¢ rather than by its bond diagram. (Other sugars also have the C4H120g form,
though with different bond diagrams.)

Example: Let B be the class of binary words over the alphabet {0,1}. Define |B| to be the
length of B. The elements of BB are

B ={¢,0,1,00,01,10,11,000,...},

where € is the “empty word” of length zero.

1
We already know that a, = 2", and it follows that B(z) = -2 but the symbolic method
is all about going the other way around. We'll find the generating function directly from the

specification of the class, then use it to find the closed form of b, (if possible).

ADMISSIBLE CONSTRUCTIONS

The symbolic method allows us to construct new combinatorial classes from old ones. A
construction is a function ® that inputs a finite sequence of classes and outputs a class:

C = CD[.A1,...,.A]<].
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A construction is admissible if the generating function of the resulting class can be de-
rived from only the generating functions of the input classes (i.e., without any additional
structural information about the input classes). So, for each admissible construction P :
(Aq,... Ax) — C, there is a function ¢ such that

C(z) = ¢p[A1(2),..., Ax(2)].

Example: Define ORDPAIRS(.A) to be the class of objects that are ordered pairs of objects
from A. Formally,

C = ORDPAIRS(A) = {(ay,a2) : a1, a2 € A},
with size function
(a1, 02)|c = |w1]a + |a2] 4.

As a quick example, if A is the class of binary words over {0,1}, then three distinct ele-
ments of ORDPAIRS(.A) are (001,€), (0,01), and (01,0), and all have size 3.

An object of size n in C = ORDPAIRS(.A) consists of an object of size k from .4 and an object
of size n — k from A, for all 0 < k < n (and order matters). Therefore,

n

#1cE) = 1 (14G) - (714@)

= Axlp—k
k=0

= [2"]A(z)’
Therefore,
C(z) = A(z).
(As a general rule, the product of generating functions tells you the number of ordered
ways to “pick one thing” from each generating function, where sizes are additive.)

Since we’ll always have C(z) = A(z)? regardless of the structure of .4, this construction is
admissible. We can now apply it to any combinatorial class. Suppose we want to find the
generating function for ordered pairs of binary words. Let B be the class of binary words

(as above), so that B(z) = 155 Then, the class of ordered pairs of binary words is

C = ORDPAIRS(B).

Therefore, we obtain immediately that

C(z) = (1 —122>2 G —12z)2’

and so ¢, = (n + 1)2". Of course, this is easy to figure out directly. The real constructions
we build will be less trivial.

Non-Example: Given two classes A and B, define C = UNION(A, BB) by
C={y:yeAorye B}.

One potential problem arises if v € AN B but || 4 # |7|s- Let’s assume that this doesn’t
happen, i.e., that the size function is consistent across A and B.
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If this construction is to be admissible, then we must be able to calculate C(z) from A(z)
and B(z) directly. This is a problem when AN B # @.

Consider for example the case where A is the class of all words over the alphabet {0,1},
B is the class of all words over the alphabet {1,2}, and C is the class of all words over
the alphabet {7,8}. Clearly, the number of words of length n in UNION(A, B) is 2" ! — 1,
while the number of words of length 7 in UNION(A, C) is 2" 1.

Therefore, for arbitrary classes .4 and B, we cannot compute the generating function of
UNION(A, B), and so UNION is not an admissible construction.

&, Z, DISUNION, CARTPROD, AND SEQ

Elemental Classes. As the symbolic method lets us build new classes from old, we need
some simple classes to be the initial building blocks.

Let £ be the class that consists of a single element that has size 0. We call this element €
and call it the neutral object. The generating function of £ is E(z) = 1.

Let Z be the class that consists of a single element that has size 1. We will often subscript
the class name for clarity. For example, the classes that represent the single word a of
length 1 and the single word b of length 1 can be denoted Z, and Z}, respectively. We call
these atomic elements. The generating function for Z is Z(z) = z.

D1SUNION. The construction UNION discussed earlier was shown to not be an admissi-
ble construction. We consider instead the DISUNION construction in which A and B are
assumed to be (well, are forced to be) disjoint.

To disjointify A and B, we imagine that all elements of A are colored red and all elements
of B are colored blue. With this convention, the construction becomes admissible. Let
C = DISUNION(A, B). Then

[2"]C(2) = [2"]A(2) + [2"]B(2),

and therefore C(z) = A(z) + B(z). Of course, DISUNION performs a different job than
UNION, so if your input classes A and B are not really disjoint, make sure the disjointifi-
cation is what you want.

We abbreviate DISUNION(A, B) = A+ B.

CARTPROD. The ORDPAIRS construction above allowed us to form all ordered pairs of
objects from a class A. The CARTPROD construction is more general: it forms all ordered
pairs of an object from A (first) and an object from B (second). Note that

ORDPAIRS(.A) = CARTPROD(A, A).
The size function is additive: if « € A and B € B, then |(a, B)| = |a|4 + |B|5-

Because the pairs are ordered, we don’t need to worry about disjointness of A and B.
However, beware that you cannot form all unordered pairs using the construction

CARTPROD(A, B) + CARTPROD(B, A)
if ANB £ Q.
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Let C = CARTPROD(A, B). The calculation of C(z) is nearly identical to the ORDPAIRS
construction. The elements of size n in C are those with a first component of size k and a
second component of size n — k, for all 0 < k < n. Therefore,

n

#1CE) = ) (E14()) - (2" 1B(2))

=Y b,k
k=0
— ["]A()B(2),
proving that C(z) = A(z)B(z).
We abbreviate CARTPROD (A, B) = A x B.
By iteration, we can define the n-fold Cartesian product analogously: define
C=A; x Ay x Az x - A = (((A1 x Az) x Az) x -+ X Ay).

Then,
C(z) = A1(z)A2(2)As(z) - - - Ak(2).

SEQ. The last construction that we define for now is the sequence constructor. Given a
class A, define SEQ(.A) to be the set of all finite (possibly zero) length sequences of ele-
ments from A4, with additive size. Formally,

SEQ(A) = {e} U {(as,a2,...,ar) ke NT, a; € A},
with

(a1, @2, ..o k) |seqa) = || a+ [az|a+ -+ |ag]a
Actually, this isn’t really a new construction, because we can build it from 4 and x.

SEQA) = & + A +AXA+AXAXA+---.

empty  seqs of seqs of seqs of
seq lengthl  length2 length 3

(We're using the fact that the unions are all disjoint!)
From this we see that if C = SEQ(.A), then

Cz) =14+A(z) +AGE)>?+ AP+ -
1
= 1A

This last line should concern you! We’ve taken an infinite sum of formal power series and
declared that the result is also a formal power series. In fact, without a restriction on A(z),
this isn’t even true.

If A has an elements of size zero, then each term in the sum forming C(z) has a constant
term of at least 1, so the result cannot be a formal power series. Suppose now that .A has no
element of size zero. Then, the smallest power of z with a nonzero coefficient in A(z)" is
z". This tells us that the coefficient of z" in C(z) depends only on finitely many terms in the
infinite sum on the right-hand side, and you can check that that coefficient is equal to the
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onein (1 — A(z))~!, so we don’t really need a formalized notion of infinite convergence of
formal power series'. This argument looks familiar because it is. Since

1 —1\(2) - (1 iz> °Al),

we actually already knew that as long as ap = 0,

1+A()+ AR+ = (1+z+22+---) 0 A(z)

= <1iz> o A(z)

B 1
1 Az)

RESTRICTED SEQUENCES

There are a number of modifications to the SEQ construction that will prove to be useful.
As defined above, SEQ(.A) consists of all sequences of elements from A of any length
including zero. Often, we will want to restrict to only sequences of certain lengths. For
example,

SEQ_(A):  sequences of length exactly k,

SEQ<k(A):  sequences of length at most k,

SEQxk(A) : sequences of length at least k,
SEQeven(A) : sequences of even length,

SEQuaq(A) : sequences of odd length,

etc. Their generating functions are easily found:

SEQ_i(A):  A(2)f,

SEQr(A): 1+ A2)+ AR+ + A= 11_1422();‘;1,
Sru(A): AR AR = A
SEQeven(A): 1+ AR +A(2) +--- = 1 —z}l(z)z'
SEQeaa(A):  A(z) + A+ A(z)+--- = 1 _141(42()2)2

More generally, for any subset (2 C IN, we define
SEQn(A) = ) SEQu(A),

we)

ISuch a notion exists, and can be quite useful. Let f € R[[z]], and define the valuation of f (denoted val(f))
to be the smallest-order coefficient that is nonzero. Define d(f,g) = 2~ Val(f=8), 5o that pairs of sequences with
many of their first coefficients equal are close together. This is distance function forms a metric space (in fact,
an ultrametric space).
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where the summation sign should be interpreted as repeated application of the disjoint
union construction. The associated generating function is

Clz) =) A(2)“.

we)
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