MATH 31 – HOMEWORK 4

due Wednesday, July 26

Instructions: This assignment is due at the *beginning* of class. Staple your work together (do not just fold over the corner). Please write the questions in the correct order. If I cannot read your handwriting, you won't receive full credit.

- 1. (8.4 and 8.10) (8 points)
 - (a) (3 *points*) Let $\pi = (x_1 \ x_2 \ \cdots \ x_r) \in S_n$. Show that $o(\pi) = r$. (Note: this means implicitly that all the x_i are different.)
 - (b) (3 *points*) Suppose that a permutation π is the product of disjoint cycles $\pi_1, \pi_2, ..., \pi_m$. Show that $o(\pi)$ is the least common multiple of $\{o(\pi_1), o(\pi_2), ..., o(\pi_m)\}$.
 - (c) (2 points) Find the order of the permutation

in *S*₁₂.

- 2. (4 points) (8.12) Does A_6 have an element of order 6? Does A_7 ?
- 3. (4 *points*) Find the right cosets of the subgroup $H = \langle (1,1) \rangle$ in $\mathbb{Z}_4 \times \mathbb{Z}_4$.
- 4. (4 points) (9.13) Suppose G is a group and A and B are subgroups of G. Define a relation R on G by

x R y if and only if there exist $a \in A$ and $b \in B$ such that x = ayb.

Prove that *R* is an equivalence relation on *G*.