Man, Apr. 22,2024
Announcements:
\rightarrow HiN 5 due tonight
\rightarrow Conure evaluations open
Topic 12 - Particle Swarm Optimization
Let $x_{i}(t)$ and $v_{i}(t)$ denote the position and velocity of particle i at time t.

$$
\begin{aligned}
& * \underline{x_{i}(t+1)}=\underline{x_{i}(t)}+\underline{v_{i}(t+1)} \\
& v_{i}(t+1)=\underbrace{\alpha \cdot v_{i}(t)}_{\text {inertia }}+\underset{\text { veter }}{\beta \cdot \underbrace{r_{1}}_{\text {v er }}} \cdot \underbrace{\left(b_{i}(t)-x_{i}(t)\right)}_{\text {vector }} \\
& +\quad r_{2} \cdot\left(B(t)-x_{i}(t)\right)
\end{aligned}
$$

$b_{i}(t)=$ best sol. particle i has ever seen up to tome t
$B(x)=$ best sol any partite has ever seen up to time t
$\alpha_{1} \beta, \gamma=$ weighting factors of the three components (1) inertia, (2) personal best, (3) global best
typically, $\alpha \approx 0.9, \quad \beta \approx 1, \quad \gamma \approx 1$
r_{1} and r_{2} are random vector whose components are in $[0,1]$.

* Code Demo

Problem: What if your particles run away? (what if the particles move to solutions that violate constraints)
\rightarrow max and min bounds like

$$
-2 \pi \leq x, y \leq 2 \pi
$$

\rightarrow constraints like the spring problem

Option 1) If the new position of a particle would violate constraint, just don't move it.
(keep its new velocity)

The decay $\alpha \quad($ ex $=\alpha=0.9)$
means the velocity will
shrink each time until moving it is eventually okay again.

Option 2) If a particle moves out of bounds, delete it and randomly add a new one somewhere in the search space.

* Sometimes people add another term to the velocity in between "local best" and "global best". For every particle. choose a few other particles randomly to be "informants."

Add a term
$r_{3} \cdot \delta \cdot($ best sol any informant hos seen $]$
$\frac{- \text { [current position]) }}{x_{i}(t)}$

* Nothing like Hill-Climbing here, no tweaks. How can we incorporate save H-C?
* H-C of the end
* If differentiable, mcorpovate gradient ito the velocity
* Switch back and forth between PS mode and HC mode

