Mon, Mar 4, 2024
Scientific Computing
Announcements:
\rightarrow HF 3 due Fri, March 8
\rightarrow Wed March 6: In-class midterm
\rightarrow Format:

* Take the m-class part
* When dove, take pictures of your answers, then furn in
* Keep Os, and take take-have portion
* Fri: Office Hows in roam during lecture
* Take-home due by the start of doss on Wed after break.

Lecture 7 - Backtracking (continued)
Backtracking

1	2	3	4	5	6	7
w / v	$8 / 13$	$3 / 7$	$5 / 10$	$5 / 10$	$2 / 1$	$2 / 1$
$2 / 1$						

$$
\begin{aligned}
& \text { waIl } x \text { every possibitly on this branch }
\end{aligned}
$$

Sudoku:

4	7	1	6	2	$2 x^{3}$	8	9	5
6		8		5	4			
		5			8	7		4
8			4	3	2			
	3			1			4	
			9	8	7			1
1		3	8			4		
			3	4		5		9
				6	9		1	8

Backtracking

- Start filing in black cells $L-t_{0}-R$ then T-to-B.
- Start each cell at 1
- If that doesn't violate a rule, move to the next cell
- If it does violate, increase the value.
- If $1-9$ are all bad, clear the cell, go back to the previous cell, and increase that one.

Ex: Weighted Interval Scheduling
Requests $R=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$
Every request has a start time s_{i} fish time f_{i} value v_{i}
Goal: To accept a set of requests with no conflicts that maximizes focal value.

Build a solution bit-by-bit:
look at each request one-by-we, accept or reject.
Once you accept a meeting you can then ignore all other meetings that conflict
with it.
This set up is perfect fer recursion because once we accept or reject a meeting we are left with solving two subproblem of the same form.

Ex: $R=\left\{r_{1}, \ldots, r_{10}\right\}$

Solve $\left(\left\{r_{1}, \ldots, r_{10}\right\}\right)$ acceptri reject r_{1}
$R^{\prime}=$ requests that don't conflict with r. return solve (R^{\prime})
return

$$
\begin{aligned}
& \text { return } \\
& \text { solve }\left(\left\{r_{2}, \ldots, r_{10}\right\}\right)
\end{aligned}
$$

recursion

Pseudocode
function solve(requests):
\#god: return the subset of [requests]
with no conflicts and highest total value
if $\operatorname{len}($ requests $)=0$:
return []
new-request $=$ requests $[0]$
compatible $=$ requests that do not conflict with new-request

$$
\begin{aligned}
& \text { accept_solution }=\text { [new-request }]+ \text { solve }(\text { compatible }) \\
& \text { reject_solution }=\text { solve }(\text { requests }[1:])
\end{aligned}
$$

return whichever of accept-solution and reject-solution has the highest value

Ex: Job Scheduling Problem

	1	2	3	\cdots	\cdots
duration	\cdot			\cdots	\cdots
deadline					
profit	-	-	\cdots	\cdots	\cdots

Search space: All ordered lists of a subset of the jobs.
n jobs, j_{1}, j_{2}, \ldots, in 1 n
Search space $=\left\{\begin{array}{l}\text { empty list } \\ \varepsilon,\left[j_{i j}\right],\left[j_{2}\right], \ldots,[j n] .\end{array}\right.$

$$
\frac{\left[j_{1, j 2}\right],\left[j_{2, j 1}\right],\left[j_{1}, j 3\right],\left[j,[j, j 1] \cdots \cdot\left[j_{n-1, j u}\right],\left[j_{n}, j_{n 1}\right]\right.}{n \cdot(n-1)}
$$

$\left[j_{1}, \ldots, j_{n}\right]$ \& in any order\}

$$
n!=n(n-1)(n-2) \ldots(3)(2)(1)
$$

