Wed, Feb 28,2024
Scientific Computing
Announcements:
\rightarrow HF 3 due Fri, March 8
\rightarrow Wed March 6: In-class midterm
\rightarrow O.H. today, $2 \mathrm{pm}-3 \mathrm{pm}$ in CU 307
$\rightarrow 0 .+1$ Thursday, $10: 30 \mathrm{am}-11: 30 \mathrm{am}$ on Minos ot Teams

Topic 6 - Divide + Conquer (continued)
Ex \#3 Counting Inversions
Input: a list of distinct \#s

$$
L=3,19,-7,2,1,6,0,-10
$$

An inversion is a pair $\left(L_{i}, L_{j}\right)$ where $i<j$ and $L_{i}>L_{j}$.
(In wards a par of elements where the fast is bigger than the second)

Goal: count the \# of inversions
This list: $5+6+1 \times 3+2+2+1=20$ muensious
Brute force: Check all pairs.
The \# of pairs is $\binom{n}{2}=O\left(n^{2}\right)$
Divide + Conquer:

So, 9 muersions within a half. How do we count the inversions where the first element is in the left half and
the second is in the right?
Checking all pars (green, red) works but is basically brute force.

Here's the trick: While we're counting inversions, well also sort the lists, which we know takes $O(n \cdot \log (n))$.

Now we reed to use this information to count all inversions AND sort the whole list.

We recombine the two sorted lists into one big sorted list, just like mergesort. Can we detect inversions between the two lists?

since we probed from purple while there were 4 blues,

$$
4+3+3+1=11
$$

crossing inversions $+4$ we know -10 is part of 4 crossing inversions

$$
\leadsto O(n \cdot \log (n))
$$

Ex $\# 4$: Closest Pair of Points $\quad(70 s)$
Input: n points in the $x y$-plane

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}
$$

Goal: Find the pair $\left(p_{i}, p_{j}\right)$ with $i \neq j$ that is the closest to each other.
Brute force: $\binom{n}{2} \quad O\left(n^{2}\right)$

There is a $D+C$ algorithm that is too difficult that is $O(n \cdot \log (n))$.

Other famous $D+C$ algorithms.
Integer Multiplication
Input: Two n-digit in tellers x and y
Output: $x \cdot y$

$$
\begin{array}{r}
172 \\
\times 424 \\
\hline 688 \\
\left.\begin{array}{r}
3440 \\
\hline 78800 \\
\hline 7298
\end{array}\right\} O\left(n^{2}\right)\left\{\begin{array}{l}
D+C \text { algo: } \\
T(n)=3 \cdot T\left(\frac{n}{2}\right)+n \\
\Rightarrow T(n)=O\left(n^{\log _{2}(3)}\right) \\
=O\left(n^{1.59 \ldots}\right)
\end{array}\right)
\end{array}
$$

Lecture 7 - Backtracking
Like $D+C$: It's a way to find a guaranteed optimal solution.

- Does so without brute face
* When you code it, you often use recursion
Otheruse it's a very different :dea.
Vague premise: Build up solutions bit-by-bit, one part at a time, and give up when a partially built solution is destmed to always violate constraints.

Ex \#1: Knapsack	item	weight	value
Capacity: 10	1	8	13
	2	3	7
With brute force:	3	5	10
Possibililites: $\varnothing,\{1\},\{2\}, \ldots$	4	5	10
$\{1,3,4,5,7\}$	5	2	1
too heavy, and still too heavy	6	2	1
if you remade any smile item 7	2	1	

Backtracking

$$
c=10
$$

1	2	3	4	5	6	7
w / v	$8 / 13$	$3 / 7$	$5 / 10$	$5 / 10$	$2 / 1$	$2 / 1$
$2 / 1$						

