Mon, Feb 26, 2024
Scientific Computing
Announcements:
\rightarrow HF 3 due Fri, March 8
\rightarrow Wed March 6: In -class midterm
\rightarrow Thursday Office Hours: iffy
Topic 6 - Divide + Conquer (cartimued)
What's the runtime of merge sort? Hard to answer because it's recursive.

Step 1) Recurrence for the runtime.
Let " $T(n)$ " be the runtime when the input has size n.

Steps of merge sat:
Apply to the left half: $T(n / 2)$

Apply to the right half: $T(n / 2)$
Merge:

Recurrence: $T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{2}\right)+n$

Step 2: Apply "The Master Theorem" that converts many recurrences into formulas for $\pi(n)$.

$$
T(n)=O(n-\log (n))
$$

A few notes

* We split the uput in half, not the search space
* Coming up $D+C$ algos is very not obvious, and it only works on same problems.

Ex \#2 - The simplest divide + conquer algorithm: "binary search".

* I'm thinking of a \# between 1 and 100. You get 7 guesses, and after each guess, I'll tell you "higher" or "lower".
$\begin{array}{ll}50: \text { lower } & \text { 19: lower } \\ 25: l o w e r & 15:\end{array}$
13: higher
Guaranteed to succeed if you always pick the middle number because you throw half of the possibilities every time.

Why 7?

$$
\begin{aligned}
& 2^{7}=128 \geqslant 100 \\
& 2^{6}=64<100
\end{aligned}
$$

$\log _{2}(n)$
Recurrence: $T(n)=1+T\left(\frac{n}{2}\right)$
Master Theorem: $T(n)=O(\log (n))$
$O\left(\log _{10}(n)\right)$ is the same as $O\left(\log _{2}(n)\right)$ because they differ by a constant multiple ("change of base formula") and big-0 notation ignores constant multiples.

$$
O(S n)=O(n)
$$

Binary Search:
Input is a sorted list, and one thing "x" Question: Is " x " in the list?

Searching an unsorted list for an element
is slow: $O(n)$. (Check every spot \mid by \mid)
Searching a Sorted list for an element is fast using binary search: $O(\log (n))$.

1) check the middle element if it $=x$, done
2) If it's $\angle x$, throw the left half away, repeat on the right half
3) If it's $>x_{\text {, }}$ throw the right half away, repeat on left half

Ex \#3 Counting Inversions
Input: a list of distinct \#s

$$
L=3,19,-7,2,1,6,0,-10
$$

An inversion is a pair $\left(L_{i}, L_{j}\right)$ where $i<j$ and $L_{i}>L_{j}$.
(In wards a par of elements where the fast is bigger than the second)

Goal: count the \# of inversions
This list: $5+6+1 \times 3+2+2+1=20$ muensious
Brute force: Check all pairs.
The \# of pairs is $\binom{n}{2}=O\left(n^{2}\right)$
Divide + Conquer:

So, 9 muersions within a half. How do we count the inversions where the first element is in the left half and
the second is in the right?
Checking all pars (green, red) works but is basically brute force.

