Friday! Feb 16,2024
Scientific Computing
Announcements
\rightarrow Madly Office Hours canceled

* Replacement Tuesclay, virtual on Teams time TBD
\rightarrow HO 2 due next Friday
Topic 5 - Search Spares + Brute Force
Most of our problems can be summarized as:
"Out of all ways to do [Something]:
(1) Do any of them satisfy certain constraints?
and/ar
(2) which ore is optimal?

Greedy algos give very quick solutions
to do [something], usually decent quality usually not completely optimal.
G.A. do not try all possible solutions usually they just try a single one.

The search space of a problem is the set of all possible "things" that may or may not satisfy your constramts, may or may not be optimal, but they all have some score that you're trying to maximize or minimize.

The next few lectures:
Methods to check (or rule out) every item in the search space to guaranteed optimal solutions.

After that:
Methods to get very good (not new. optimal) solutions by wandering around the
search space in clever ways.
Most obvious way to get an optimal Solution: brute farce.
\rightarrow Generate every element of the search space.
For each one: check if valid if so, compute the score Keep track of the best solution that you've seen so far.

Ex 1: Weighted Interval Scheduling 3 requests

Search space: All subsets of $\left\{w_{1}, w_{2}, w_{3}\right\}$

Optimal = the candidate that has the highest score and is valid.
Fact: There are (2^{n} subsets of a set of size n.

Exponential. 2^{n} means: every time my input data gets 1 meeting bigger, the search space doubles in size.
≈ 250 meetings
The \# of possible solutions $\left(=2^{250}\right)$ is more than the \# of atoms in the universe.

Pseudocode:

$$
R=\left\{w_{1}, w_{2}, w_{3}\right\}
$$

$R=$ set of meeting requests

$$
b=0 \text { best sol = None }
$$

for each subset r of $R: \operatorname{loop} 2^{n}$ times
if r is valid:

$$
\begin{aligned}
& s=s \operatorname{core}(r) \\
& \text { if } s>b:
\end{aligned}
$$

$$
b=s_{\text {_ }} \text { best_sol }=r
$$

return bo
return best-sol
(n meetings)
How lang does this take?
Cooping 2^{n} times
In each repetition of the loop: check if it's valid n steps compute the score n steps

$$
\begin{aligned}
\approx 2^{n} \cdot(2 n)= & O_{\uparrow}\left(n \cdot 2^{n}\right) \text { time } \\
& \text { big-0 notation }
\end{aligned}
$$

Knapsack: Same situation as WIS.
a items
Search space: all subsets of the n items Size of search space: 2^{n}

Closest Pair:
Input: n points in the 2D x, y-plane.
Goal: Find the pair of points that is closest (normal Euclidean distance to each other.

Search space:
all pairs of points

$$
\begin{aligned}
& \left\{\left(p_{1}, p_{2}\right),\left(p_{2}, p_{1}\right),\left(p_{1}, p_{3}\right), \ldots .\right\} \\
& \text { unordered }
\end{aligned}
$$

The size is $O\left(n^{2}\right)$
Exact size: $\binom{n}{2}=\frac{n(n-1)}{2}=\frac{n^{2}}{2}-\frac{n}{2}$ $O\left(n^{2}\right)$

