Ex \#4: Closest Pair of Points (hard)
Input: n points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$
Goal: Find the pair $\left(p_{i}, p_{j}\right)$ such that

$$
d\left(p_{i}, p_{j}\right)=\text { Euclidean Distance }
$$

is minimized.
(Assume distinct x and y values for simplicity.)
Step 1:-Create a version of P that is sorted by x-value, call it P_{x}.

- Create a version of P that is sorted by y-value, call it $P_{y} . O(n \log (n))$

Step 2: Begin divide - and-con ques.

- Split P into left half L and right half R using P_{x}. $O(1)$
- Form $l_{x}, L_{y}, R_{x}, R_{y}$ using P_{x} and P_{y}. $O(n)$
- Find dosest pair in $\left.L:\left(l_{1} l_{2}\right)\right\}$ and closest pair in $\left.R:\left(r_{1}, r_{2}\right)\right\}$ recursion.
- Set $\delta=\min \left(d\left(l_{1}, l_{2}\right), d\left(r_{1}, r_{2}\right)\right) . \quad O(1)$
- Now the hard part: how do we combine? Closest pair could be in L_{1}, in R_{1} or have one point in each.

Fact 1: If the closest pair is split across the middle line, then each point has to be within δ of the line.

Define S to be just the points within δ of the line. $O(n)$
Note that $S=P$ is possible!
Form S_{x} and S_{y} using P_{x} and $P_{y} . O(n)$
Here's where it gets really weird! Split up the 2δ-wide vertical strip centered on the middle line into $\delta / 2 \times \delta / 2$ boxes.
\qquad Fact 2: Each box citrins at most a single point of S. (Otherwise, those points would be $<\frac{\delta}{2} \sqrt{2}<\delta$ apart, contradicting the fact that δ is min. distance on either side of the line.)

Let's think about S_{y}, the points in S ordered by y-value.

If you have two points in S_{y} that are 4 positions aport (eeg., the $10^{\text {th }}$ and $14^{\text {th }}$), they have to be an different rows of squares.

8 aport \rightarrow empty now between then $\rightarrow>\delta / 2$ aport 12 aport $\leadsto 2$ empty sows between them $\leadsto>\delta$ apart

Fact 3: If two points in S are $\leq \delta$ apart, their positions in S_{y} differ by at most 11 .

So, to find the closest pair in S, we don't have to check every pair $\left(O\left(|S|^{2}\right)\right.$), only the pars at most 11 apart $\left.\begin{array}{lll}s_{1} & s_{2} \\ s_{1} & s_{3} \\ s_{1} & s_{12} \\ s_{2} & s_{3}\end{array}\right\}$

$$
\left.\begin{array}{rl}
s_{2} & s_{3} \\
\vdots \\
s_{2} s_{13}
\end{array}\right\}_{11} \quad=O(\| 1 \cdot|s|)=
$$

Summary:

- Presort to get $P_{x,} P_{y} \quad O(n \log (n))$
- Split in half and fum $L_{x}, L_{y}, R_{x}, R_{y} O(n)$
- Recursively solve an L and R
- Find $S_{1} S_{x}, S_{y} O(n)$
- Check pairs in S at most 11 apart $O(n)$

$$
\begin{aligned}
& T(n)=O(n \cdot \log (n))+S(n) \\
& {[S(n)=O(n)+2 \cdot S(n / 2)+O(n)+O(n)} \\
& \Rightarrow S(n)=O(n \cdot \log (n)) \\
& \Rightarrow T(n)=O(n \cdot \log (n)) .
\end{aligned}
$$

