MATH 4670 / 5670 - COMBINATORICS Homework 5

Spring 2024
assigned Wednesday, April 3
due Wednesday, April 17, by the beginning of class

This homework assignment was written in ${ }_{L A T} E X$. You can find the source code on the course website.

All answers must be fully justified to receive credit. Answers without justification will not be considered correct.

* Questions that ask you to "prove" something or ask you to "give a proof" should be answered with formal mathematical proofs.

1. (2.4) Find a formula for $P(n, n-4)$ for $n \geq 5$.
2. (2.4) Let $P(n)$ denote the number of integer partitions into any number of parts. Some initial values are

n	1	2	3	4	5	6	7	8	9	10
$P(n)$	1	2	3	5	7	11	15	22	30	42

Find and prove a formula in terms of $P(n)$ for the number of integer partitions of n that have no parts of size 1 .
3. (2.4) In class on Wednesday, March 27, we began to prove a bijection that was going to prove the identity

$$
P(n, k)=P(n-k, 0)+P(n-k, 1)+P(n-k, 2)+\cdots+P(n-k, k)
$$

We came up with the function $D: A \rightarrow B$ that subtracts 1 from each part and deleting any resulting 0s. Using type vector notation:

$$
D\left(\left[1^{p_{1}} 2^{p_{2}} \cdots m^{p_{m}}\right]\right)=\left[1^{p_{2}} 2^{p_{3}} \cdots(m-1)^{p_{m}}\right]
$$

The domain A is integer partitions of n into k parts. The codomain B is integer partitions of $n-k$ into at most k parts. In class we proved this function is well-defined.
In this exercise, prove that the function is injective. I recommend assuming $p, q \in A$ with $D(p)=D(q)$ and then proving $p=q$. (We started this in class.) Use type vector notation in your proof so that it is clear and precise.
4. (2.4) Prove that the function D in the previous exercise is surjective. Again, use type vector notation and mathematical logic as much as possible.
Hint: Let $r \in B$, so r is an integer partition of $n-k$ into j parts where $0 \leq j \leq k$. Write r in type vector notation. Find a partition $p \in A$ with the property that $D(p)=r$. Make sure to prove that the p you find really is in A !
5. (3.1) How many functions $[6] \rightarrow[7]$ have at most two arrows pointing to each element of the codomain?
6. (3.1) Derive an identity for $\binom{n}{k}$ via inclusion-exclusion by counting the k-multisets of $[n]$ in which each element of $[n]$ appears at most once. Use $p_{i}=$ "element i appears more than once in the multiset" as the i th property, for $1 \leq i \leq n$.
7. (3.1) A taxi drives from the intersection labeled A to the intersection labeled B in the grid of streets shown below. The driver only drives north (up) or east (right.)

Traffic reports indicate that there is a heavy congestion at the intersections identified. How many routes from A to B can the driver take that avoid all congested intersections? Your answer should use the idea of inclusion-exclusion.
8. See the graph G in Figure 5.46 on page 102 (in Section 5.9, Exercises) of the free textbook "Applied Combinatorics" by Keller and Trotter. Write G formally as a set V of vertices and E of edges. Then, list the degrees of all of the vertices.
9. Draw a graph with 6 vertices having degrees $5,4,4,2,1$, and 1 or explain why such a graph does not exist.

