Wednesday, May 3, 2023
Lecture \#42
MSS 6000
Announcements

* Hanewark 6 due the last day of class

11:59 pm

* Final Exam (take-home) assigned last day of class, due Friday, May 13, 11:59pm
* Course Evaluations are open
* Normal OH this week 2:30-3:30 today on MS Teams

Topic 15-Neighborhoods in Continuous Space
Ways to pick points in continuous space with a d-dimensioual sphere of radius.

Ways to move around continuous space:

1) Pick a random point (uniformly) in a dimensional sphere. $U(-\delta, \delta)$
2) Gaussian (normal) random walk: For each component of $x=\left(x_{1}, x_{2}, \ldots x_{d}\right)$ add a shift drawn from a naval distribution with mean \mathcal{O} and std. dec. δ.

$(x, y) \rightarrow\left(x+s_{1}, y+s_{2}\right)$ where s_{1}, s_{2} are drawn from $N(0, \delta)$.

* smaller tweaks are move likely than larges tweaks
* tweaks can be arbitrarily large (but less and less likely)

"thin tails"

3) Lévy flight

A different distribution.

* Much thicker tails than a normal distribution.

Many many small tweaks but a small probability of an extremely large tweak.

Only given pos. \#s, so we hove to also randomly pick a + or - sign to go with it.
To draw a randan \#: $s=r^{-1 / \alpha}$, where r
is a uniform randan \# drown from $10,1]$.

When are ley flights good or bad?

* Bad if α is too small
* Bad it the londsape is very spikey.
* Very bad for H-C
$\rightarrow \rightarrow$ useless
*Makes simulated annealing move interesting - mare exploration
* Great for Mus that have a population of solutions and need a tweak function.

Topic 16 - Firefly Search and Cuckoo Search lots of MH are inspired by biology.

The trick is telling which ones are good and which ones ave good and which are... less good.

Fireflies:
Fireflies use their lights to attract each other, and the level of attraction depends on the intensity of the light.
Firefly search is a population MH, kind of like PSO but with different movement rules.

Each firefly represents a solution. Better solutions = brighter lights
A freely's movement in each step is toward each other brighter firefly plus a random component (Gaussian or levy flight).
Difference with PSO: We don't compare solutions like this.

Suppose firefly j is brighter than firefly i. (6) The attractiveness of j to i is:

$$
A_{i j}=\beta \cdot e^{-\gamma r_{i j}^{2}}
$$

where $r_{i j}$ is the Euclidean distance between the two fireflies, and β and γ ave parameters that we con tune.

Attractiveness decays exponentially according to the square of the distance.
Movement:
In each generation, we loop through all pars of fireflies and move the dimmer one toward the brighter one:

Psendocode:
$N=\#$ of fireflies
while True:
for i from 1 to N :
for j from 1 to $N=$
if firefly j is brighter then i :
move i toward j according to the formula

