Monday, May I , 2023
Lecture \#41
MSS 6000
Announcements

* Hanewark 6 due the last day of class

11:59 pm

* Final Exam (take-home) assigned last day of class, due Friday, May 13, 11:59pm
* Course Evaluations are open
* Normal Of this week 1pm-d.pon today in person.

Topic 15-Neighborhoods in Continuous Space
In our Hs in continuous space that need a tweak function, we've used a simple one:

Start with $x=\left(x_{1}, x_{2}, \ldots x_{d}\right)$
(in d-dimensional space)

$$
\begin{aligned}
s= & \operatorname{tweak}(x) \\
& =x+\left(r_{1} \delta_{1}, r_{2} \delta_{2}, \ldots, r_{d} \delta_{d}\right)
\end{aligned}
$$

where each r_{i} is a uniform random \# between -1 and 1 and δ_{i} is a predetermined scaling factor that determines the max. change allowed.

* In most of our examples the x and y bounds were the some, so we used $\delta_{1}=\delta_{2}=0.1$ or $\delta_{1}=\delta_{2}=0.01$, etc.
* In the spring problem: $\delta_{c}=\delta_{2}=0.01$ $\delta_{3}=0.1$

From now on, assume $\delta_{i}=1$ and $x=\overrightarrow{0}$

$$
\Rightarrow s=\operatorname{tweak}(x)=\left(r_{1}, r_{2}, \ldots, r_{d}\right) \text {. }
$$

2-d space

In $2 d$ this tweak raudculy picks a pt. in a square with side length 2. (avifevonly).

What is the furthest that s could be from x (in the $2 d$ case)
In the cormen, which has distance $\sqrt{2}$.
In 3D:

$$
\begin{aligned}
& s=(1,1,1) \\
& x=(0,0,0)
\end{aligned}
$$

distance $\sqrt{3}$
In Dimension d : the furthest away that s can be from x is \sqrt{d}

As dimension grows, the tweaks can be further and further away, which isn't good.

One way to fix this:

* scale s down by a factor of $\frac{1}{\sqrt{d}}$.
Scales everything equal
* Instead of picking a randan point in a square, pick a random point in a coracle.

You have to be very careful about how you randomly pick points in a circle.

Ex:
Pick $x \in[-1,1]$ uniformly then pick $y \in\left[-\sqrt{1-x^{2}}, \sqrt{1-x^{2}}\right]$.
(bad, demo)
Ex:
Pick $\theta \in[0,2 \pi)$, then pick $r \in[0,1]$.

Ex: Rejection Sampling

* Prick a point uniformly in the square.
$*$ If it's in the circle, keep it, otherwise
try again.
How inefficient is this?
Area of the 2D square? 4
Area of the $2 D$ circle? $\pi=3.14$
The probability that a point in the square is also in the circle is

$$
\frac{\pi}{4} \approx 75 \%
$$

The volume of the d-dim. cube us. the d-dim. square:

rejection sampling cant work in higher dimensions.
"Muller method" Mullet method
Weird bat it wars:
To pick points uniformly from a d-dimensional sphere:

- pick $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)$ each coordinate from a Gaussian (normal) distribution with mean 0 and stol. Lev. of
- Define norm $=\sqrt{\mu_{1}^{2}+\mu_{2}^{2}+\ldots+\mu_{d}^{2}}$
- Define $r=$ uniform random
$\#$ in $[0,1]]^{1 / d}$
- Define $x=\frac{r \cdot \mu}{\text { norm }}$ random point.

