$$
\frac{\sin ^{2}(x-y) \sin ^{2}(x+y)}{\sqrt{x^{2}+y^{2}}}
$$

$$
x^{2}+y^{2}+25\left(\sin ^{2}(x)+\sin ^{2}(y)\right)
$$

$$
\begin{gathered}
\sin ^{2}(3 \pi x)+(x-1)^{2}\left(1+\sin ^{2}(3 \pi y)\right) \\
+(y-1)^{2}\left(1+\sin ^{2}(2 \pi y)\right)
\end{gathered}
$$

$$
\begin{aligned}
& (|x|+|y|) e^{\left(-\sin ^{2}(x)-\sin ^{2}(y)\right)} \\
& \begin{array}{r}
\sin (y) \sin ^{20}\left(\frac{2 y^{2}}{\pi}\right) \\
-\sin (x) \sin ^{20}\left(\frac{x^{2}}{\pi}\right)
\end{array}
\end{aligned}
$$

Friday, April 21, 2023
Lecture \#37
MSS 6000
Announcements

* Homework 5 in progress, due Man 11:59pm
* Honewark 6 assigned Monday, due last day of class.
* Final Exam (take-home) assigned last day of class, due TBD (\approx Friday, May B, II:59pm)

Topic 13 - Particle Swarm Optimization (PSO)
In $H-C$ and simulated annealing (and many other MUs), we have a tracked a single solution moving through the search space.

PSO (1995) is our first example
of a "population metaheuristic" we will track many solutions at a time and they will interact with each other.

Idea: Yon have N particles, each representing a possible solution, and they start at roudom positions.

Each particle has a velocity which depends on three things:

1) its current velocity (inertia)
2) the best solution that that particle has ever seen
3) the best solution that any particle has ever seen

Let $x_{i}(t)$ and $v_{i}(t)$ denote the position (x) and velocity (v) of particle i at time t.

$$
x_{i}(t+1)=x_{i}(t)+v_{i}(t+1)
$$

(the velocity determines how the position changes)

$$
\begin{aligned}
& v_{i}(t+1)=\alpha \cdot v_{i}(t)+\beta \cdot r_{1} \cdot\left(b_{i}(t)-x_{i}(t)\right) \\
&+\gamma \cdot r_{2} \cdot\left(B(t)-x_{i}(t)\right)
\end{aligned}
$$

$b_{i}(t)=$ best solution particle i has seen by time t
$B(t)=$ best solution any particle has seen by time t.
x : weighting factor for inertia $* 0.9$
β : weighting factor for personal best ≈ 1
γ : weighting factor for global best ≈ 1 $b_{i}(t)-x_{i}(t)$: the vector that points from $x_{i}(t)$ (current location) to $b_{i}(t)$ (personal best) $B(t)-x_{i}(t)$: the vector that points from $x_{i}(t)$ to $B(t)$

$$
\begin{equation*}
v_{i}(t+1)=\alpha \cdot v_{i}(t)+\beta \cdot r_{1} \cdot\left(b_{i}(t)-x_{i}(t)\right) \tag{4}
\end{equation*}
$$

r_{1} and r_{2} are random vectors in $[0,1]$

$$
r_{1}=\left[\begin{array}{l}
0.1279 \ldots \\
0.5263 \ldots \\
0.4141 \ldots
\end{array}\right] \quad r_{2}=
$$

$[0.9,1]$

This makes a lot of sense for continuous problems, no sense for discrete problems.
Vector arithmetic: $b_{i}(t)=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \quad x_{i}(t)=\left[\begin{array}{l}d \\ e \\ f\end{array}\right]$

$$
\begin{aligned}
& b_{i}(t)-x_{i}(t)=\left[\begin{array}{l}
a-d \\
b-e \\
c-f
\end{array}\right] \\
& \begin{aligned}
r_{1}=\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right] \quad & r_{1} \cdot\left(b_{i}(t)-x_{i}(t)\right) \\
& =\left[\begin{array}{l}
s_{1}(a-d) \\
s_{2}(b-e) \\
s_{3}(c-f)
\end{array}\right]
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{r}
\beta \cdot r_{1} \cdot\left(b_{i}(t)-x_{i}(t)\right) \\
=\left[\begin{array}{l}
\beta \cdot s_{1} \cdot(a-d) \\
\beta \cdot s_{2} \cdot(b-e) \\
\beta \cdot s_{3} \cdot(c-f)
\end{array}\right]
\end{array}
$$

