Wednesday, April: 12,2023
Lecture \#33
MSS 6000
Announcements

* Normal Office Hours today, 2:30.3:30 (Teems)
* Homework 5 assigned, two Simulated Annealing problems - be creative! Bonus pts?

Tope 12 - Simulated Annealing (contined)
Last time:
Springs Demo
Knapsack Demo
There are lots of research papers using SA in interesting applicationc-arline routing, school bus scheduling, etc.
various ways to handle tweak that (2)
violate constraints

* retweale until good
* allow violations, but penalize

The idea of allowing (but penalizing) solutions that violate the constraints allows us to apply SA to problems that have no score, only constraints.
Ex: Solving Sudokus
Score $=(\#$ of row conflicts $)+(\#$ of col. conflict) + (\# of 3×3 square conflicts)
Goal: Minimize the score
If we get a sore of 0 , that's a solution. If we end up with a score >0, we failed.

Parallel Tempering
A variation on SA:
Instead of rumung one system that cooks over time, run multiple systems that are each at a constant temp (but diff. from each other), that are allowed to swop solutions.

Intuition: Person A very good at exploring. Person B very good at exporting.
They both run for a while, until person A says "I think I found a good hill, let's swap so you can exploit it."

Should they swap? Let $E_{i}=\operatorname{score}\left(S_{i}\right)$

At any point m time swap with prob

$$
p=\min \left(1, e^{\Delta}\right)
$$

$$
\Delta=\underbrace{\left(E_{1}-E_{2}\right)}_{>0 \text { when the }} \cdot(\underbrace{\left.\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)}_{\text {always }>0} \text { 協 }>\frac{1}{T_{1}}
$$

where explorer has a better
solution than the expbiten
In this case, $p=1$, always swap
If $E_{1}>E_{2}$, always swap.
If $E_{1} \subset E_{2}$, sometimes swap depending on how much wore E_{1} is.

Mare generally, k different systems:

System i and $i+1$ swap with prob

$$
\begin{aligned}
& P_{i}=\min \left(1, e^{\Delta_{i}}\right) \\
& \Delta_{i}=\left(E_{i}-E_{i+1}\right) \cdot\left(\frac{1}{T_{i+1}}-\frac{1}{T_{i}}\right)
\end{aligned}
$$

* Can also allow the temps to vary if swaps are happening too often or too rarely.

$$
\angle 0.1 \%
$$

