Fri, March 31,2023
Lecture \#29
MSS 6000
Announcements

* HWy 4 due Mon, Apr 3 . II:S9pm
* Fri, Apr. 7 - no doss

Mon, Apr. 10 -no lecture (home work day)
no OH
Topic 12 - $S_{\text {mulated }} A_{\text {nnealing }}$
Spoons
Hill Climbing: Only allows moves that improve the score (sometimes with randan restarts)

SA: worsening moves are accepted with some probability

At the start, the "system" has a "high temperature" and the probability of accepting a worse move is high.
Over time the system "cools" and the probability decreases slowly to 0 .

Very high temp: basically doing a random walk, accepting every tweak

Very low: basically hill climbing
Idea: as the system cools you hope to wander onto a good hill and get stack there.

Technical Details
Acceptance conditions:
(assume maximizing)
Suppose the current temp is T.
$x=$ current sol
$s=$ tweak (x) (maybe the new sol)

Define $\Delta=\operatorname{score}(s)-\operatorname{score}(x)$
If $\Delta>0, s$ is an improvement over x, allay accept
If $\Delta \leq 0$, accept with probability

$$
p=e^{\Delta / T}
$$

\rightarrow from physics
Since $\Delta \leqslant 0, \Delta / T \leqslant 0$

$$
\Rightarrow 0<e^{\Delta / T} \leq 1
$$

T being higher $\Rightarrow \frac{\Delta}{T}$ is lower
Ex:

$$
\begin{aligned}
& \Delta=-5 \quad T=1 \Rightarrow \frac{\Delta}{T}=-5 \\
& \Delta=-5 \quad T=\frac{1}{10} \Rightarrow \frac{\Delta}{T}=-50
\end{aligned}
$$

Cooling Schedule:
The way the temperature changes over time.

* We control this!
* Geometric (most common)

Pick some \# $0<x<1$ ahead of time.
new temp $=$ (old (emp) $\cdot \alpha$
Ex: initial temp $=10 \quad x=0.9$

$$
10 \rightarrow 9 \rightarrow 8.1 \rightarrow 7.29 \rightarrow \ldots .
$$

(will never hit 0)
$\alpha=0.9$ is pretty fast
$\alpha=0.95,0.98,0.99$ is good

$$
T_{n}=T_{0} \cdot \alpha^{n}
$$

temp after $] \quad$ initial temp a cooling

Linear: Pick a number $\beta>0$
new temp $=($ old temp $)-\beta$
If you cool too much, you'll have negative temperatures.
\rightarrow suddenly you accept every worse solution

* Many mare cooling schedules, including
non-monotove ones.
Process:
Pick an initial temperature T. (How?) $x=$ random solution

$$
\text { best }=x
$$

Repeat:
For a while:

$$
\begin{aligned}
& s=t_{\text {weak }}(x) \\
& \Delta=\operatorname{score}(s)-\operatorname{score}(x) \\
& \text { it } \Delta>0: \\
& \quad x=s \\
& \text { if score }(x)>\text { score(best): } \\
& \quad \text { best }=x
\end{aligned}
$$

else:
$r=$ random \# in $[0,1]$
if $r<\left(e^{\Delta T}\right)$: 0.1

$$
x=5
$$

adjust the temp according to the cooling schedule

with probability 10% I want to print "hi"
if random () < 0.1 :
prout("hi")

