Mon, March 27,2023
Lecture \#27
MSS 6000
Announcements

* Normal Office Hows today lpm-2pm in cu 307
- OH 1 Wed are moved to $4: 30 \mathrm{pm}-5: 30 \mathrm{pm}$ (Teens)
* HoW 4 due Mon, Apr 3
* Fri, Apr. 7 - no doss

Mon, Apr. 10 - no lecture (home work day) no OH

Topic 11- Hill Climbing (continued)
Inspired by Gradient Ascent:
MH \#2: Steepest Ascent Hill Climbing
(for discrete only)
$x=$ randan element of $S$
while True:

$$
N=n b h d(x)
$$

$S=$ element of $N$ with the highest score
if score $(s)>$ score $(x)$ :

$$
x=5
$$

else:
\# were at the top of a hill quit

If continuous, $N$ is probably an mfnite set, so we can't compute the score of everything in $N$.

* Guaranteed to find * Unlikely to find
a local optimum global opt. unless lucky and/or search space is nice
* Ven y slow because the neighborhoods can be big and we are forced to score every thing in the unbid.

What's the slow past?
Only doing two things:
(1) generating the ubhd
(2) scoring the ubhd

TSP - scoring a tour of 300 cities is not too bad
300 distance calculations

$$
d\left(\left(x_{1}, y_{1}\right)_{1}\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

two subtractions
two squarings one addition

But the size of the unbid is

Dong 300. 44551 distance calculations is slow.

How can we speed this up?
(1) When you want the score of a tweaked tour, start with the score of the original tour, and alter it accordingly.
Original Tour $\longrightarrow$ Nbhd


Score of new $=[$ Score of old $]-[3$ orange distances] $[3$ purple dist $]$
(2) Pre-calculate and store the distance between all $\binom{300}{2}=150.299$ pairs of cities.

Now you don't need to do any move distance calculations.
You do still need to add all these distances for each tour.
For large problems, may not have enough memory.
Can be combined with (1).
Concrete example of (1):


Let $d$ be the distance function.

$$
\begin{aligned}
\text { score }(T)=d & (A, B)+d(B, C)+d(C, D)+d(D, E) \\
& +d(E, F)+d(F, G)+d(G, A)
\end{aligned}
$$

Swap B+E

$$
\begin{align*}
& A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G \rightarrow A  \tag{6}\\
& A \rightarrow E \rightarrow C \rightarrow D \rightarrow B \rightarrow F \rightarrow G \rightarrow A
\end{align*}
$$



$$
\begin{aligned}
\text { score }\left(T^{\prime}\right) & =\operatorname{scare}(T)-[d(A, B)+d(B, C) \\
& +d(D, E)+d(E, F)]+[d(A, E) \\
& +d(E, C)+d(D, B)+d(B, F)]
\end{aligned}
$$

If you have 300 cities: new $=$ old -4 edges +4 edges 8 distance calculations vs. 300

$$
\frac{300}{8}=37.5 x \text { faster }
$$

Is this tweak (swapping two cities) a good tweak?

* makes small changes
* gets good results

Demo, 50 cities, gives a bad result

Can we think of another tweak?
Pick two cities and reverse the entire route in between them.

$$
\begin{aligned}
& A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G \rightarrow A \\
& A \rightarrow E \rightarrow D \rightarrow C \rightarrow B \rightarrow F \rightarrow G \rightarrow A
\end{aligned}
$$



changes 2 edges at a time, not 4
Many other possible tweaks.
Demo - much faster when we use the scormg tricks

- this new tweak (reverse a block) gives better results than the old one
-still slow because it looks at the whole ubhd

How can we adopt this for continuous spaces (when the unbid is infinite?)

MH\#3 $n$-trial steepest ascent
$x=$ randan element of 5
while True:

$$
t_{\text {emp }}=x
$$

(temp is the
repeat $n$ times: beet of $n$
$s=$ tweak $(x)$ twa th

$$
x=\text { temp }
$$

$$
\operatorname{temp}=s
$$

if none of the tweaks beat $x$, then it stays the same
tweak $=$ a random thing in the nbhd, and there are many different ways to do that

Next time: the $n=1$ version, which is just called "hill climbing".

