Fri, March 24,2023
Lecture \#26
MSS 6000
Announcements

* Normal Office Hows Mayday
* HW 4 assigned today, due Mon, Apr 3 Lon DNL, two attachments
Topic 10- Introduction to Metaheuristres
Gradient Ascent:
* start at a point
- compute gradient (vector that tells you
"move a little in ascent")
that direction
* report
you end up at the top of some hill and if you're lucky it's the tallest hill
Adapting to a discrete search space:
Ex: TSP
- Search space: all tours on the set of cities
Each tour is a location on the landscape (a place in the mountains)
- need a "definition for two tours to be "Nearby"
Ex: cities $=\{1,2,3,4,5\}$
tour: $3 \rightarrow 5 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 3$
what tours are "close"?
Up to you how to defoe this.
One possibility: the nearby tours
are the ones you get by swapping any two cities internal

$$
\begin{aligned}
& 3 \rightarrow 5 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 3 \\
& 3 \rightarrow 1 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 3
\end{aligned}
$$

- start at a randan four
\rightarrow calculate the score of all nearby tours
* move to the best (cheapest) one * report

This will fund a local optimum
\rightarrow max or min
$l s$ best in it's area, but maybe not best overall

Metahenristics are all about smort ways to explave the seosch space.

leads you the wrong way

Topic I1-Hill-Climbing
Goal: Develop a MH with Gradient Ascent as our mapiration. We want to find o global optima for either
continuous or discrete search spaces.
Problem Setup:

* Search space S full of candidates
* Scoring function: score $(x), x \in S$ (also called "fitness" ar "quality")
* A way to generate either:
- all the candidates "nearby" a candidate (the "neighborhood of x ", ubhd (x))
(doesn't make sense for continuous problems)
- a sugle random candidate near a candidate
(a "tweak", tweak (x))
"nearby" is up to you to define, and definitions can completely change how a MH behaves.

Two running examples:
(1) TSP

* discrete
* Score $=$ cost of tour, wont to minimize
* nbhd (x) :

$$
\text { Suppose } x=C_{1} \rightarrow C_{2} \rightarrow C_{3} \rightarrow \ldots \rightarrow C_{n} \rightarrow C_{1}
$$

Define the unbid of x to be all ways of picking two internal cities and swapping them.
How big is nbhd? $\quad\binom{n-1}{2}=\frac{(n-1)(n-2)}{2}$ $\approx \frac{u^{2}}{2}$
Pretty big abd.

* tweak (x): one random thing in the nohd
(2) optimizing a continuous function in two variables $f(x, y)$ * continuous
* search space
all (x, y) points maybe within some interval
* score of a point = the value of f at that point
* nbhd ((x, y))
(what points are "near" a point in 2D, 3D, ... 20D, space?) all points with a distance $<\delta$ from x for some small $\# \delta$.

* tweak $((x, y))=$ a randan point in the neighborhood, like before.

MH \#1: Random Search
best = random element of S
while True: (on until you're bored)
$x=$ random element of S
if s core $(x)>\operatorname{score}$ (best):

$$
\text { best }=x
$$

Possible stopping conditions:

* best score does not improve for
N consecutive tries
* a preset \# of attempts
* run until you get bored

This is not a good MH! It does not use any of the old information to guide future choices.
Inspired by Gradient Ascent:
MH \#2: Steepest Ascent Hill Climbing
(for discrete only)
$x=$ randan element of S
while True:

$$
N=\operatorname{nbh} d(x)
$$

$S=$ element of N with the highest score
if score (s) $>$ score (x) :

$$
x=5
$$

else:
\# were at the top of a hill quit

If continuous, N is probably an mfinite set, so we can't compute the score of everything in N.

