Wed, March 22,2023 Lecture \# 25
MSS 6000
Announcements

* Normal Office Hows today, 2:30-3:30
on Teams and in-person Cu 307
* HW 4 will be assigned on Friday, due the following Fordoy (1 problem)
Topic 10- Introduction to Metaheuvistres
In the 1s土 half of the semester, we focused on ways to find optimal solutions.

Downside: - difficult to design algo

- very slow (even though very slow)
Ex: Travelling Salesman still takes exponential time $O\left(n^{2} \cdot 2^{n}\right)$ which is
too slow to be useful!
Metaheuristias:
- General problem solving paradigms that can easily adapted to many problems
- They for good solutions, and rarely find actually optimal ones
- Pretty fort

Similar setup:

* Search space of candidates
* Every candidate has a score ("fitness" or "quality")
* Could have coustrants
* Goal: Find a candidate with a good scone that satisfies the coustrants
[in the abstract weill tall e about maximizing, but sometimes you want to minimize]

Ours problems will be categaized as:

discrete \uparrow	or	continuous
mite search		\uparrow
space	infinite search	
	space	

Demos: "matplotlib" pip install
(1) TSP random and random greedy

$$
\begin{aligned}
& \text { Best } \approx 20.95 \text { (random) } \\
& 7.12 \text { (random greedy) }
\end{aligned}
$$

(2) Steepest Ascent Hill-Climbing

$$
\approx 6.487
$$

(3) Simulated Annealing

$$
\approx 6.300
$$

a discrete problem
Ex: Find the maximum value of

$$
f(x)=\frac{1}{\cos \left(10(x+1)^{2}\right)} \cdot \sin \left(\min \left((x+1)^{100}, \frac{1}{x}\right)\right)
$$

on the interval $0.02 \leq x \leq 0.04$.
This one you could maybe do with calculus, but the "min" makes that hand, and most interesting problems are:

- are in many more variables
- implicit (solution of some complicated diff. eq.)

Most of the search spaces weill look at are not 1 dimensional

Ex: TSP - finite, 0 dimensional, but big
Helpful to think about "landscape pictures" - metaphor or mental picture for a search space

Ex: $\frac{\sin ^{2}(x-y) \cdot \sin ^{2}(x+y)}{\sqrt{x^{2}+y^{2}}}$
Goal: Fid the top
 of the tallest hill.

Gradient Ascent/Descent

* Optimization method you leave in save math class
* If your function $f(x, y)$ is differentiable, then at any (x, y) point you can compute the "gradient" of f at that point.
* The gradient is a vector that
always points in the direction of steepest ascent.
Process:
(1) Start at a point
(2) compute the gradient

13) move a little in that direction
(4) repeat

Where do you end up? Depends on where you start.

Requires calculus $(f(x, y)$ to be differentiable)

