Monday, March 6,2023
Lecture \# 21
MSS 6000
Announcements

* HL 3 due Wednesday II:59pm
* Midterm Exam. Wednesday in class
(up to backtracking, no branch + bound)
* Friday, office hours 10 am -105 Dam in my office, no lecture
* Normal Office Hours this week, today Ipmidpm in my office

Topic 8-Branch and Bound

General Procedure \cdot search space returns function ($b b(S$, best - sol $=$ None): : or best -sol. if b whichever whichever is
if best_sol is None: (assume maximizing)

$$
\text { best_score }=-\infty
$$

else:

$$
\text { best_score }=\text { score (best_sol) }
$$

if $|S|=1$: (no move branching, we're ot candidate $=$ the one thing in $S^{\text {completion) }}$

$$
\text { value }=\text { score (candidate) }
$$

if value > best-scove:
return candidate
else:
return bestasol
$S_{1}, S_{2}=\operatorname{branch}(S)$ (could be more than 2) if $\operatorname{bound}\left(S_{1}\right)>$ best_score: (we have a best sol $=b b(s$ best sol) chance of best_sol $=b b\left(S_{1}\right.$, best-sol) improving in $\left.S_{1}\right)$ best-score $=$ score (best-sol)
if bound $\left(S_{2}\right)>$ best-scove:

$$
\begin{aligned}
& \text { best_sol }=b b\left(s_{2}, \text { best-sol }\right) \\
& \text { best-score }=\text { score(best_sol })
\end{aligned}
$$

return best-sol
If the \# of branches varies (like Job Assignment Problem) you can do the last part in a loop.
branches $=$ branch (S)
for branch in branches:
if bound (branch) > best -score: best-sol $=b b($ branch, best-sol $)$ best-score $=$ scove(best-sol)

Relaxation
Let's try to do B+B on the Knapsack prob.

items	weight	value	Copacity: 14
1	8^{8}	13	
2	3	7	Need two things:
3	5	10	Branching
4	5	10	Bounding
5	2	1	
6	2	1	
7	2	1	

Branching - same as with backtracking
Item 1 is in or art
Item 2 is in or out

items	weight	value
$\frac{1}{2}$	8	13
2	3	7
3	5	10
4	5	10
5	2	1
6	2	1
7	2	1

Bounding:
Suppose we have put item 1 ant and item 2 in. How can we find an upper bound on the beat we could possibly
do completing this solution?
Notes: * Greedy solutions are lower bounds.

* "Add up the values of all remaining items" is an upper bound but a pretty useless one (weak)
* We want our upper bound to be fast to compute.

The trick is relaxation: sometimes it's
easier to find an UB if you adjust (3) the problem to be move permissive.

items	weight	value	
1	8	13	0.
2	3	7	1
3	5	10	1
4	5	10	0.4
5	2	1	0
6	2	1	0
7	2	1	0

0.5 4/6.5 Fractional Knapsack:
$1015 / 10$ You are allowed to take fractions of an item.

Theorem: An optimal (and greedy) solution to the Fractional Knapsack problem can be found by:
(1) order the items by value
(2) take items from the top in full until you can't anymore
(3) take whatever fraction you can of the next item
We wan't prove this, but you should think about it until you believe it.

items	weight	value	density	Capocity $=14$		(6)
1	8	13	1.625	4	12.5%	$13 / 8$
2	3	7	2.333	(1)	100%	7
3	5	10	2	(2)	100%	10
4	5	10	2	(3)	100%	10
5	2	1	0.5	(5)		28.625
6	2	1	0.5	(6)		

(If capacity $=10$, you get 21 which beats the 20 for regular knapsack)

So Fractional Greedy $=$ Fractional Optimal \geq Regular Optimal
We can therefore get on UB for the regular knapsack by computing the greedy fractional solution on whatever items remain.

caparity
items
weight
walue

Greedy search: $14,10,(18)$ three diifferent redy runs
(1)
(2)
(3)
best. score $=18$

