Friday, March 3,2023
Lecture \# 20
MSS 6000
Announcements

* HoW 3 due Wed, March 8, 11:59 pm
* Midterm Exam, Wed, March 8 in class (up to backtracking, no branch + bound)
* Friday, March 10, office hours 10am-1050am in my office, no lecture

Topic 8-Branch and Bound
Ex: Job Assignment Problem You have n tacks that need to be done and n workers. Each task has a different cost to complete depending on which worker does it.

Each worker can do 1 task. Goal: minimize total cost.

* Search Space: All assignments of workers to tack e.
How big? $n!\quad(4!=4.3-2-1=24)$
Constrants? None, every candidate is valid.
Backtracking is useless (equivalent to brute force)

Two things to describe
(1) Branching
(2) Bounding \downarrow
how were going to build
the partial solutions

* Pick which worker does a certain task

Bounding: in this problem we ore minimizing so what we want is a lower bound for the best way to complete any partial solution.
"I dan't know how cheaply I can furnish this partial solution, but I know for sure I can't do it cheaper than X."
T. lower bound

Suppose we've already decided that worker B will do task 1.

Under this assumption how can we find a lower

	4	2	3	4
A	5	5	2	2
B	6	8	10	8
C	2	6	4	9
D	19	4	7	5

If every other lash is free, the cost already incurred (6) is a lower bound. \rightarrow True, but not a strong bound

Better: each worker will have to do a task, they could never do better than evenfue doing the cheapest remaining task

This is a lower bound of $6+2+4+4=16$.
Alternative: Every remaining task has to be dove. They can never be done cheaper than then cheapest cost.

This is a lower band of $6+4+2+2=14$.

For this partial solution the first version was stronger, but in general you can try both and always use the stronger (higher) one.

Lower Bound:
\max (sum of smallest \# in each remarnugy row,
sum of smallest \# in each remaking col)

+ cost of already-decided tasks

Fully worked example.
 fond that the sol 20 , since the parent has a band
of 20 , there's no need to explore the other children

Notes:

* In general, the hardest part is funding a good bound - highly problem specific The stronger the bound, the mare pruning you get \Rightarrow foster algorithms
* At the start we had no "best sol" so we started at ∞. Instead, we can we can run a greedy algo frit to have a starting solution.

With this we would have dove a lot move pruning.

	1	2	3	4
A	3	5	2	2
B	6	8	10	8
C	2	-6	4	9
D	10	4	7	5
cost $=16$				

