


































































I jLecture 17

covers brute
face

Dtcibacktizchi
AYfYwgmatTsigndtodag.due Wed March 8 1159pm

HW 2 due tonight 1159pm
Extra Office Hours today 1pm 2pm in person
Office Hours nextWednesday cancelled

Midterm Exam Wed March 8 in class

Tpr 7 Backtracking

like Dtc backtracking is a style of
algorithm for finding optimal solutions
in a search space without actually
checking every candidate

Very simple ideas Build solutions one part
at a time and give up when a partially
built solution violates the constraints





































































Etgsadrblem

itemsyweightuate

with brute force

you check every
2 3 7 subset

10
I

5 10 Possibilitresfrandidates
5 2 0 13 23
6 2 I 113,45,73
7 M

not only is this too heavy

but it's still too heavy if you
remove any single item

Checking all 27 128 possibilities includes

a lot of over capacity candidates that
we could have predicted are bad

EI 1,2 already over capacity
skip 42,33 12,43 42,73
112 3,43 91,213,53 1,2 73





































































skip 3 2 more possibilities

9123 any subset of 3,456,7

Backtracking for each item decide whether
or not to keep it

1 2 3 4 5 6 7
8 13 3 7 5110 To 2 1 41 41

branch
ships 31Possibilities

gqy.gg
fiIfn'ecsaipsisposs

Loft in poss Sol 10114

lout off into
10114

loutrinou
inFIJI 40 3

stout outrunlit

it





































































Way better than brute force in terms

of speed but trickier to implement

What are we doing

Putting a hierarchy on decisions that
build the whole search space with
the critical property
if a partial solution becomes bad
then every solution that branches
off of it is also bad

Knapsack with 7 items
Candidate subsets of 1,213,45,6 73
hierarchy

g subsets of 1I in or out

2 in or outO 423 if ggybsets of 1.23

subsets of
114 7





































































In code traverse the tree and
whenever you find a bad candidate

stop traversing that branch

You can pick the order of the decisions

and this could impact how fast
the code is deciding on heavier items
first probably leads to earlier pruning

Cane be much faster than brute force
In bad cases no

pruning this is just
as bad as brute force

EI if you have a super high capacity

or very light items you might have
no for very little pruning





































































Ext Sudoku

1 3 89 5 8 hwaf filling
0 1 9 in each

blank space
Size of search space
g
of blanks

Backtracking Start filling blanks L R then

T B Start each cell at I If that
cell doesn't violate the rules move to the
next cell If it does violate add 1 to it
If it reaches 10 dear the cell go
back to the previous one

See course website for link to Sudoku demo


